Anh Minh vừa mới xây một cái hồ trữ nước cạnh nhà có hình dạng hộp chữ nhật kích thước
Anh Minh vừa mới xây một cái hồ trữ nước cạnh nhà có hình dạng hộp chữ nhật kích thước \(2m \times 2m \times 1m.\) Hiện hồ chưa có nước nên anh Minh phải ra sông lấy nước. Mỗi lần ra sông anh gánh được 1 đôi nước gồm 2 thùng hình trụ bằng nhau có bán kính đáy \(0,2\,\,m,\) chiều cao \(0,4\,m.\)
Trả lời cho các câu 421529, 421530 dưới đây:
Tính lượng nước \(\left( {{m^3}} \right)\) anh Minh đổ vào hồ sau mỗi lần gánh (ghi kết quả làm tròn đến 2 chữ số thập phân). Biết trong quá trình gánh nước về thì lượng nước bị hao hụt khoảng \(10\% \) và công thức tính thể tích hình trụ là \(V = \pi {R^2}h.\)
Đáp án đúng là: B
Tính thể tích \({V_1}\) của 2 thùng nước mỗi lần anh Minh gánh được.
Thể tích thực tế anh Minh gánh được là: \(V = 90\% {V_1}.\)
Thể tích của 2 thùng nước mỗi lần anh Minh gánh được là: \({V_1} = 2\pi {R^2}h = 2\pi .0,{2^2}.0,4 = 0,032\pi .\)
Trong quá trình gánh, lượng nước bị hao hụt \(10\% \) nên lượng nước thực tế anh Minh gánh được sau mỗi lần là: \(V = 0,032\pi .90\% \approx 0,09\,\,\left( {{m^3}} \right).\)
Hỏi anh Minh phải gánh ít nhất bao nhiêu lần để đầy hồ? Bỏ qua thể tính thành hồ.
Đáp án đúng là: A
Tính thể tích \({V_0} = abc\) của hồ nước.
Số lần ít nhất anh Minh cần gánh nước là: \(n = \left[ {\frac{{{V_0}}}{V}} \right].\)
Thể tích của hồ nước hình hộp chữ nhật là: \({V_0} = 2.2.1 = 4\,\,\left( {{m^3}} \right).\)
Số lần ít nhất anh Minh cần gánh để được đầy hồ nước là: \(n = \left[ {\dfrac{{{V_0}}}{V}} \right] = \left[ {\dfrac{4}{{0,09}}} \right] = \left[ {\dfrac{{400}}{9}} \right] = 44 + 1 = 45\) (lần).
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com