Cho \(\angle xOy\). Vẽ \(\angle yOz\) kề bù với \(\angle xOy\). Vẽ \(\angle xOt\) kề bù với \(\angle
Cho \(\angle xOy\). Vẽ \(\angle yOz\) kề bù với \(\angle xOy\). Vẽ \(\angle xOt\) kề bù với \(\angle xOy\). Vẽ \(On\) là tia phân giác \(\angle yOz\). Vẽ \(Om\) là phân giác của \(\angle xOt\). Khi đó \(\angle zOn\) và \(\angle xOm\) có phải là hai góc đối đỉnh hay không?
Chứng minh:
+ \(\angle nOz = \angle xOm\);
+ \(Om\) và \(On\) là hai tia đối nhau
Vì \(\angle yOz\) kề bù với \(\angle xOy\) nên \(Ox\) và \(Oz\) là hai tia đối nhau
\(\angle xOy\) kề bù với \(\angle xOt\) nên \(Oy\) và \(Ot\) là hai tia đối nhau.
Ta có: \(\angle yOz = \angle xOt\) (hai góc đối đỉnh thì bằng nhau)
Do \(On\) là đường phân giác của \(\angle yOz\)\( \Rightarrow \angle yOn = \angle nOz = \dfrac{1}{2}\angle yOz\) (tính chất đường phân giác của một góc)
\(Om\) là đường phân giác của \(\angle xOt\) \( \Rightarrow \angle xOm = \angle mOt = \dfrac{1}{2}\angle xOt\) (tính chất đường phân giác của một góc)
Suy ra \(\angle nOz = \angle xOm;\angle mOt = \angle yOn\)
Lại có: \(\angle xOy\) và \(\angle xOt\) là hai góc kề bù nên \(\angle xOy + \angle xOt = {180^0}\)
\(\begin{array}{l} \Rightarrow \angle xOy + \angle xOm + \angle mOt = {180^0}\\ \Rightarrow \angle xOy + \angle xOm + \angle yOn = {180^0}\\ \Rightarrow \left( {\angle xOy + \angle yOn} \right) + \angle xOm = {180^0}\\ \Rightarrow \angle xOn + \angle xOm = {180^0}\end{array}\)
Suy ra \(\angle xOn\) và \(\angle xOm\) là hai góc kề bù.
Do đó, \(Om\) và \(On\) là hai tia đối nhau
Vậy \(\angle zOn\) và \(\angle xOm\) là hai góc đối đỉnh.
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com