Chứng minh: \(\dfrac{1}{4} + \dfrac{1}{9} + \dfrac{1}{{16}} + \ldots + \dfrac{1}{{529}} <
Chứng minh: \(\dfrac{1}{4} + \dfrac{1}{9} + \dfrac{1}{{16}} + \ldots + \dfrac{1}{{529}} < \dfrac{{22}}{{23}}\)
Quảng cáo
Sử dụng phương pháp làm trội.
\(\begin{array}{l}\dfrac{1}{4} + \dfrac{1}{9} + \dfrac{1}{{16}} + \ldots + \dfrac{1}{{529}}\\ = \dfrac{1}{{{2^2}}} + \dfrac{1}{{{3^2}}} + \dfrac{1}{{{4^2}}} + ... + \dfrac{1}{{{{23}^2}}}\\ < \dfrac{1}{{1.2}} + \dfrac{1}{{2.3}} + \dfrac{1}{{3.4}} + ... + \dfrac{1}{{22.23}}\\ = 1 - \dfrac{1}{2} + \dfrac{1}{2} - \dfrac{1}{3} + \dfrac{1}{3} - \dfrac{1}{4} + ... + \dfrac{1}{{22}} - \dfrac{1}{{23}}\\ = 1 - \dfrac{1}{{23}} = \dfrac{{22}}{{23}}\end{array}\)
Vậy \(\dfrac{1}{4} + \dfrac{1}{9} + \dfrac{1}{{16}} + \ldots + \dfrac{1}{{529}} < \dfrac{{22}}{{23}}\) (đpcm).
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com