Cho cấp số nhân \(\left( {{u_n}} \right)\) thỏa mãn \(\left\{ \begin{array}{l}{u_1} - {u_3} + {u_5}
Cho cấp số nhân \(\left( {{u_n}} \right)\) thỏa mãn \(\left\{ \begin{array}{l}{u_1} - {u_3} + {u_5} = 65\\{u_1} + {u_7} = 325\end{array} \right.\). Tính \({u_3}\).
Đáp án đúng là:
\({u_n} = {u_1}{q^{n - 1}}.\)
\(\begin{array}{l}\left\{ \begin{array}{l}{u_1} - {u_3} + {u_5} = 65\\{u_1} + {u_7} = 325\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} - {u_1}{q^2} + {u_1}{q^4} = 65\\{u_1} + {u_1}{q^6} = 325\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}{u_1}\left( {1 - {q^2} + {q^4}} \right) = 65\\{u_1}\left( {1 + {q^6}} \right) = 325\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}{u_1}\left( {1 - {q^2} + {q^4}} \right) = 65\\{u_1}\left( {1 + {q^2}} \right)\left( {1 - {q^2} + {q^4}} \right) = 325\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}{u_1}\left( {1 - {q^2} + {q^4}} \right) = 65\\1 + {q^2} = 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}\left( {1 - {q^2} + {q^4}} \right) = 65\\{q^2} = 4\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}{u_1}\left( {1 - 4 + 16} \right) = 65\\q = \pm 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 5\\q = \pm 2\end{array} \right.\\ \Rightarrow {u_3} = {u_1}{q^2} = 5.4 = 20.\end{array}\)
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com