Nguyên hàm, tích phân và ứng dụng
Tính tích phân \(I = \int\limits_{\dfrac{1}{2}}^1 {\dfrac{{{x^2} - 3}}{{x\left( {{x^4} + 3{x^2} + 2} \right)}}dx} \)
Đáp án đúng là: B
\(I = \int\limits_{\dfrac{1}{2}}^1 {\dfrac{{\left( {{x^2} - 3} \right)x}}{{{x^2}\left( {{x^4} + 3{x^2} + 2} \right)}}dx} \)
Đặt \(t = {x^2} \Rightarrow dt = 2xdx \Rightarrow xdx = \dfrac{{dt}}{2}\)
Đổi cận: \(x = \dfrac{1}{2} \Rightarrow t = \dfrac{1}{4};\,\,x = 1 \Rightarrow t = 1\)
\( \Rightarrow I = \int\limits_{\dfrac{1}{4}}^1 {\dfrac{{t - 3}}{{t\left( {{t^2} + 3t + 2} \right)}}\dfrac{{dt}}{2}} = \dfrac{1}{2}\int\limits_{\dfrac{1}{4}}^1 {\dfrac{{t - 3}}{{t\left( {{t^2} + 3t + 2} \right)}}dt} \)
Ta có:
\(\dfrac{{t - 3}}{{t\left( {{t^2} + 3t + 2} \right)}} = \dfrac{{t - 3}}{{t\left( {t + 1} \right)\left( {t + 2} \right)}} = \dfrac{A}{t} + \dfrac{B}{{t + 1}} + \dfrac{C}{{t + 2}}\)
\(\begin{array}{l}
\Rightarrow t - 3 = A\left( {t + 1} \right)\left( {t + 2} \right) + Bt\left( {t + 2} \right) + Ct\left( {t + 1} \right)\\
\Leftrightarrow t - 3 = \left( {A + B + C} \right){t^2} + \left( {3A + 2B + C} \right)t + 2A\\
\Rightarrow \left\{ \begin{array}{l}
A + B + C = 0\\
3A + 2B + C = 1\\
2A = - 3
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
A = \dfrac{{ - 3}}{2}\\
B = 4\\
C = - \dfrac{5}{2}
\end{array} \right.\\
\Rightarrow \dfrac{{t - 3}}{{t\left( {t + 1} \right)\left( {t + 2} \right)}} = - \dfrac{3}{2}.\dfrac{1}{t} + 4.\dfrac{1}{{t + 1}} - \dfrac{5}{2}.\frac{1}{{t + 2}}
\end{array}\)
\(\begin{array}{l}
\Rightarrow I = \dfrac{1}{2}\left[ {\frac{{ - 3}}{2}\int\limits_{\dfrac{1}{4}}^1 {\dfrac{{dt}}{t}} + 4\int\limits_{\dfrac{1}{4}}^1 {\dfrac{{dt}}{{t + 1}}} - \dfrac{5}{2}\int\limits_{\dfrac{1}{4}}^1 {\dfrac{{dt}}{{t + 2}}} } \right]\\
I = \dfrac{1}{2}.\left[ {\left. { - \dfrac{3}{2}\ln \left| t \right|} \right|_{\dfrac{1}{4}}^1 + \left. {4\ln \left| {t + 1} \right|} \right|_{\dfrac{1}{4}}^1\left. { - \dfrac{5}{2}\ln \left| {t + 2} \right|} \right|_{\dfrac{1}{4}}^1} \right]\\
I = \dfrac{1}{2}\left[ { - \dfrac{3}{2}\left( {\ln 1 - \ln \dfrac{1}{4}} \right) + 4\left( {\ln 2 - \ln \dfrac{5}{4}} \right) - \dfrac{5}{2}\left( {\ln 3 - \ln \dfrac{9}{4}} \right)} \right]\\
I = \dfrac{1}{2}\left( {\dfrac{3}{2}\ln \dfrac{1}{4} + 4\ln \dfrac{8}{5} - \dfrac{5}{2}\ln \dfrac{4}{3}} \right) = \dfrac{3}{4}\ln \dfrac{1}{4} + 2\ln \dfrac{8}{5} - \dfrac{5}{4}\ln \dfrac{4}{3}
\end{array}\)
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com