Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho hình chóp đều \(S.ABC\), đường cao \(SH\). Khoảng cách từ \(H\) đến \(SC\) bằng \(2cm\). Góc

Câu hỏi số 195665:
Vận dụng cao

Cho hình chóp đều \(S.ABC\), đường cao \(SH\). Khoảng cách từ \(H\) đến \(SC\) bằng \(2cm\). Góc tạo bởi hai mặt kề nhau bằng \(60^0\). Tính thể tích khối chóp \(S.ABC\)?

Đáp án đúng là: A

Câu hỏi:195665
Giải chi tiết

\(SH \bot \left( {ABC} \right) \Rightarrow H\) là trọng tâm tam giác đều ABC

Gọi I là trung điểm của AB

Trong (SIC) kẻ \(HK \bot SC\) ta có \(HK = 2\left( {cm} \right)\). Kẻ \(IE//HK\left( {E \in SC} \right)\)

Vì HK // IE \( \Rightarrow \dfrac{{HK}}{{IE}} = \dfrac{{HC}}{{IC}} = \dfrac{2}{3}\)\( \Rightarrow IE = \dfrac{3}{2}HK = 3\left( {cm} \right)\)

Vì \(IE//HK \Rightarrow IE \bot SC\,\,\left( 1 \right)\)

Ta có: \(\left. \begin{array}{l}AB \bot CI\\AB \bot SH\,\,\left( {SH \bot \left( {ABC} \right)} \right)\end{array} \right\}\)\( \Rightarrow AB \bot \left( {SIC} \right) \Rightarrow AB \bot SC\,\,\left( 2 \right)\)

Từ (1) và (2) suy ra \(SC \bot \left( {ABE} \right)\)\( \Rightarrow SC \bot AE;SC \bot BE\)

Ta có: \(\left. \begin{array}{l}\left( {SAC} \right) \cap \left( {SBC} \right) = SC\\\left( {SAC} \right) \supset AE \bot SC\\\left( {SBC} \right) \supset BE \bot SC\end{array} \right\}\)\( \Rightarrow \widehat {\left( {\left( {SAC} \right);\left( {SBC} \right)} \right)} = \widehat {\left( {AE;BE} \right)}\)

Giả sử\(\widehat {\left( {AE;BE} \right)} = \widehat {AEB} = {60^0}\):

Dễ chứng minh được \(\Delta ACE = \Delta BCE\left( {c.g.c} \right)\)\( \Rightarrow AE = BE\)\( \Rightarrow \Delta EAB\) cân tại E

Mà \(\widehat {AEB} = {60^0} \Rightarrow \Delta EAB\) đều\( \Rightarrow BE = AB = BC\)

Mà \(SC \bot \left( {ABE} \right)\)\( \Rightarrow SC \bot BE \Rightarrow BE < BC\) (quan hệ đường vuông  góc và đường xiên)

\( \Rightarrow \widehat {AEB} = {120^0}\)

Suy ra trung tuyến IE đồng thời là đường phân giác \( \Rightarrow \widehat {AEI} = \widehat {BEI} = \dfrac{1}{2}\widehat {AEB} = {60^0}\)

\( \Rightarrow AI = IE.\tan 60 = 3.\sqrt 3 \left( {cm} \right)\)\( \Rightarrow AB = 2AI = 6\sqrt 3 \left( {cm} \right)\)

Tam giác ABC đều  \( \Rightarrow IC = \dfrac{{AB\sqrt 3 }}{2} = \dfrac{{6\sqrt 3 .\sqrt 3 }}{2} = 9\left( {cm} \right)\)

\( \Rightarrow HC = \dfrac{2}{3}IC = \dfrac{2}{3}.9 = 6\left( {cm} \right)\)

 Xét tam giác vuông SHC có: \(SC = \sqrt {S{H^2} + H{C^2}}  = \sqrt {S{H^2} + 36} \)

\({S_{SIC}} = \dfrac{1}{2}SH.IC = \dfrac{1}{2}IE.SC\)\( \Rightarrow SH.9 = 3.\sqrt {S{H^2} + 36} \)

\( \Rightarrow 9S{H^2} = S{H^2} + 36\)\( \Rightarrow S{H^2} = \dfrac{9}{2} \Rightarrow SH = \dfrac{{3\sqrt 2 }}{2}\)

\({S_{ABC}} = \dfrac{{A{B^2}\sqrt 3 }}{4} = \dfrac{{{{\left( {6\sqrt 3 } \right)}^2}\sqrt 3 }}{4} = 27\sqrt 3 \,\left( {c{m^2}} \right)\)

Vậy \({V_{S.ABCD}} = \dfrac{1}{3}SH.{S_{ABC}}\)\( = \dfrac{1}{3}.\dfrac{{3\sqrt 2 }}{2}.27\sqrt 3  = \dfrac{{27\sqrt 6 }}{2}\left( {c{m^3}} \right)\)

Chọn A.

Tham Gia Group Dành Cho 2K7 luyện thi Tn THPT - ĐGNL - ĐGTD

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com