Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho \(A\) là điểm cố định trên đường tròn \(\left( {O;R} \right).\) Gọi \(AB\) và \(AC\) là hai dây

Câu hỏi số 219775:
Vận dụng cao

Cho \(A\) là điểm cố định trên đường tròn \(\left( {O;R} \right).\) Gọi \(AB\) và \(AC\) là hai dây cung thay đổi trên đường tròn \(\left( O \right)\) thỏa mãn \(\sqrt {AB.AC}  = R\sqrt 3 .\) Khi đó vị trí của \(B,\,C\) trên \(\left( O \right)\) để diện tích \(\Delta ABC\) lớn nhất là:

Đáp án đúng là: B

Câu hỏi:219775
Phương pháp giải

Sử dụng tính chất góc nội tiếp chắn nửa đường tròn để chứng minh \(\widehat {ABD} = {90^0} \Rightarrow \Delta ABD \sim \Delta AHC\).

Tính độ dài \(AH\) từ tính chất hai tam giác đồng dạng, từ đó suy ra điều kiện để diện tích tam giác \(ABC\) lớn nhất.

Giải chi tiết

Kẻ \(AH \bot BC,\,OI \bot BC\), đường kính \(AD.\)

Ta chứng minh được \(\Delta AHC \sim \Delta ABD\,\left( {g - g} \right).\)

Do đó \(\frac{{AH}}{{AB}} = \frac{{AC}}{{AD}} \Rightarrow AH.AD = AB.AC \Rightarrow AB.AC = 2R.AH\,\,\left( 1 \right).\)

Theo giả thiết \(\sqrt {AB.AC}  = R\sqrt 3 ,\) nên \(AB.AC = 3{R^2}\,\,\left( 2 \right).\)

Thay \(\left( 2 \right)\) và \(\left( 1 \right)\) ta có \(AH = \frac{{3R}}{2}.\)

Lại có \(OI + OA \ge AI \ge AH\) nên \(OI \ge AH - OA = \frac{{3R}}{2} - R = \frac{R}{2}.\)

Do \(AH = \frac{{3R}}{2}\) là giá trị không đổi nên \({S_{ABC}}\) lớn nhất khi \(BC\) lớn nhất \( \Leftrightarrow OI\) nhỏ nhất

\( \Leftrightarrow OI = \frac{R}{2} \Leftrightarrow BC \bot OA \Rightarrow \Delta ABC\) cân tại \(A\).

Mà \(OI = \frac{R}{2} \Rightarrow \sin \widehat {OBI} = \frac{{OI}}{{OB}} = \frac{1}{2} \Rightarrow \widehat {OBI} = \widehat {OCI} = {30^0} \Rightarrow \widehat {BOC} = {120^0}\) \( \Rightarrow \widehat {BAC} = {60^0}\)

Vậy \(\Delta ABC\) đều.

Chọn đáp án B.

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com