Cho \(x,y\) là hai số thực bất kì. Chứng minh \({x^2} - xy + {y^2} \ge \dfrac{1}{3}\left( {{x^2} + xy +
Cho \(x,y\) là hai số thực bất kì. Chứng minh \({x^2} - xy + {y^2} \ge \dfrac{1}{3}\left( {{x^2} + xy + {y^2}} \right)\)
Biến đổi bất đẳng thức ban đầu về dạng \(f\left( x \right) \ge 0\)
Ta có:
\(\begin{array}{l}{x^2} - xy + {y^2} \ge \dfrac{1}{3}\left( {{x^2} + xy + {y^2}} \right)\\ \Leftrightarrow 3{x^2} - 3xy + 3{y^2} \ge {x^2} + xy + {y^2}\\ \Leftrightarrow 2{x^2} - 4xy + 2{y^2} \ge 0\\ \Leftrightarrow {x^2} - 2xy + {y^2} \ge 0\end{array}\)
\( \Leftrightarrow {\left( {x - y} \right)^2} \ge 0\) (luôn đúng)
Dấu “=” xảy ra khi \(x = y\).
Vậy ta có đpcm.
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com