Cho hai số thực \(x;y\) thỏa mãn \(x + y = 5\) và \(xy = - 2\) . Tính giá trị của biểu thức: \(P =
Cho hai số thực \(x;y\) thỏa mãn \(x + y = 5\) và \(xy = - 2\) . Tính giá trị của biểu thức: \(P = \dfrac{{{x^3}}}{{{y^2}}} + \dfrac{{{y^3}}}{{{x^2}}} + 2020\)
Đáp án đúng là: D
Ta có:
\({x^2} + {y^2} = {\left( {x + y} \right)^2} - 2xy\) \( = {5^2} - 2.\left( { - 2} \right) = 29\)
\({x^3} + {y^3} = {\left( {x + y} \right)^3} - 3xy\left( {x + y} \right)\) \( = {5^3} - 3.\left( { - 2} \right).5 = 155\)
\(\begin{array}{l} \Rightarrow P = \dfrac{{{x^3}}}{{{y^2}}} + \dfrac{{{y^3}}}{{{x^2}}} + 2020 = \dfrac{{{x^5} + {y^5}}}{{{x^2}{y^2}}} + 2020\\ = \dfrac{{\left( {{x^2} + {y^2}} \right)\left( {{x^3} + {y^3}} \right) - \left( {{x^2}{y^3} + {x^3}{y^2}} \right)}}{{{{\left( {xy} \right)}^2}}} + 2020\\ = \dfrac{{\left( {{x^2} + {y^2}} \right)\left( {{x^3} + {y^3}} \right) - {x^2}{y^2}\left( {x + y} \right)}}{{{{\left( {xy} \right)}^2}}} + 2020\\ = \dfrac{{29.155 - {{\left( { - 2} \right)}^2}.5}}{{{{\left( { - 2} \right)}^2}}} + 2020\\ = \dfrac{{12555}}{4}.\end{array}\)
Vậy \(P = \dfrac{{12555}}{4}\) .
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com