Chứng minh rằng: \(\forall n \ge 1\), ta có: \(3{n^4} - 14{n^3} + 21{n^2} - 10n\,\, \vdots \,\,24.\)
Chứng minh rằng: \(\forall n \ge 1\), ta có: \(3{n^4} - 14{n^3} + 21{n^2} - 10n\,\, \vdots \,\,24.\)
Quảng cáo
Sử dụng phương pháp quy nạp.
Sử dụng:
\(\begin{array}{l}{\left( {k + 1} \right)^4} = {k^4} + 4{k^3} + 6{k^2} + 4k + 1\\{\left( {k + 1} \right)^3} = {k^3} + 3{k^2} + 3k + 1\\{\left( {k + 1} \right)^2} = {k^2} + 2k + 1\end{array}\)
>> Học trực tuyến lớp 6 chương trình mới trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 6 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com










