Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho tam giác nhọn ABC có BC = 8 cm. Đường tròn tâm O đường kính BC cắt AB, AC lần lượt tại E

Cho tam giác nhọn ABC có BC = 8 cm. Đường tròn tâm O đường kính BC cắt AB, AC lần lượt tại E và D. Hai đường thẳng BD và CE cắt nhau tại H.

Trả lời cho các câu 1, 2, 3 dưới đây:

Câu hỏi số 1:
Vận dụng
Chứng minh: AH vuông góc với BC.
Câu hỏi:540223
Giải chi tiết

Ta có các góc \(BDC = {90^0};\,BEC\, = {90^0}\) (Góc nội tiếp chắn nửa đường tròn)

\(\begin{array}{l} \Rightarrow BD \bot DC \Rightarrow BD \bot AC\\\,\,\,\,\,\,\,CE \bot BE \Rightarrow CE \bot AB\end{array}\)

Xét tam giác ABC có \(\left\{ \begin{array}{l}BD \bot AC\\CE \bot AC\\BD \cap CE = H\,\,\left( {gt} \right)\end{array} \right. \Rightarrow \) H là trực tâm tam giác ABC

\( \Rightarrow AH \bot BC\).

Câu hỏi số 2:
Vận dụng
Gọi K là trung điểm của AH. Chứng minh tứ giác OEKD nội tiếp.
Câu hỏi:540224
Giải chi tiết

Kéo dài AH cắt BC tại F.

Xét tứ giác AEHD có \(\angle AEH + \angle ADH = {90^0} + {90^0} = {180^0} \Rightarrow \) Tứ giác AEDH nội tiếp đường tròn đường kính AH.

Lại có K là trung điểm của AH \( \Rightarrow K\) là tâm đường tròn ngoại tiếp tứ giác AEHD.

\( \Rightarrow KA = KE = KH = KD\)

\( \Rightarrow \Delta KDH\) cân tại K \( \Rightarrow \angle KDH = \angle KHD = \angle BHF\) (1)

Xét tam giác OBD có \(OB = OD\,\left( { = R} \right) \Rightarrow \Delta OBD\) cân tại O \( \Rightarrow \angle ODB = \angle OBD\)  (2)

Từ (1) và (2) \( \Rightarrow \angle KDH + \angle ODB = \angle BHF + \angle OBD = {90^0} \Rightarrow \angle KDO = {90^0}\)

Chứng minh tương tự ta có:

\(\Delta KEH\) cân tại K \( \Rightarrow \angle KEH = \angle KHE = \angle CHF\)

Tam giác OCE có OC = OE \( \Rightarrow \Delta OCE\) cân tại \(O \Rightarrow \angle OEC = \angle OCE\)

\( \Rightarrow \angle KEH + \angle OEC = \angle CHF + \angle OCE = {90^0} \Rightarrow \angle KEO = {90^0}\)

Xét tứ giác OEKD có  \(\angle KDO + \angle KEO = {90^0} + {90^0} = {180^0} \Rightarrow  \) Tứ giác OEKD là tứ giác nội tiếp (Tứ giác có tổng hai góc đối bằng 1800)

Câu hỏi số 3:
Vận dụng cao
Cho \(\widehat {BAC} = {60^0}\). Tính độ dài đoạn DE và tỉ số diện tích của hai tam giác AED và ABC.
Câu hỏi:540225
Giải chi tiết

 Tứ giác BEDC nội tiếp đường tròn (O)

 \( \Rightarrow \angle ABC + \angle EDC = {180^0} \)

Mà  \(\angle EDC + \angle ADE = {180^0} \) (kề bù)

 \( \Rightarrow \angle ABC = \angle ADE \)

+) Xét  \(\Delta ADE \) và  \(\Delta ABC \)có:

 \(\angle A \) : chung

  \(\angle ABC = \angle ADE \) (cmt)

 \( \Rightarrow \Delta ADE \) đồng dạng  \(\Delta ABC \) (g-g)

 \( \Rightarrow  \dfrac{{DE}}{{BC}} =  \dfrac{{AD}}{{AB}} \) (1)

+)  \(\Delta ADB \)vuông tại D

  \( \Rightarrow  \dfrac{{AD}}{{AB}} = {\mathop{\rm cosBAD}\nolimits}  = \cos {60^0} =  \dfrac{1}{2} \) (2)

 Từ (1), (2) suy ra :  \( \dfrac{{DE}}{{BC}} =  \dfrac{1}{2} \Rightarrow DE =  \dfrac{1}{2}BC =  \dfrac{1}{2}.8 = 4\,\,(cm) \)

Vậy  \(DE = 4\,\,cm \).

+)  \(\Delta ADE \) đồng dạng  \(\Delta ABC \) với tỉ số đồng dạng  \(k =  \dfrac{{DE}}{{BC}} =  \dfrac{1}{2} \)

Khi đó:  \( \dfrac{{{S_{\Delta ADE}}}}{{{S_{\Delta ABC}}}} = {k^2} = {\left( { \dfrac{1}{2}} \right)^2} =  \dfrac{1}{4} \).

Quảng cáo

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com