Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho tam giác nhọn ABC có BC = 8 cm. Đường tròn tâm O đường kính BC cắt AB, AC lần lượt tại E

Cho tam giác nhọn ABC có BC = 8 cm. Đường tròn tâm O đường kính BC cắt AB, AC lần lượt tại E và D. Hai đường thẳng BD và CE cắt nhau tại H.

Trả lời cho các câu 540222, 540223, 540224 dưới đây:

Câu hỏi số 1:
Vận dụng
Chứng minh: AH vuông góc với BC.
Câu hỏi:540223
Giải chi tiết

Ta có các góc BDC=900;BEC=900BDC=900;BEC=900 (Góc nội tiếp chắn nửa đường tròn)

BDDCBDACCEBECEAB

Xét tam giác ABC có {BDACCEACBDCE=H(gt) H là trực tâm tam giác ABC

AHBC.

Câu hỏi số 2:
Vận dụng
Gọi K là trung điểm của AH. Chứng minh tứ giác OEKD nội tiếp.
Câu hỏi:540224
Giải chi tiết

Kéo dài AH cắt BC tại F.

Xét tứ giác AEHD có AEH+ADH=900+900=1800 Tứ giác AEDH nội tiếp đường tròn đường kính AH.

Lại có K là trung điểm của AH K là tâm đường tròn ngoại tiếp tứ giác AEHD.

KA=KE=KH=KD

ΔKDH cân tại K KDH=KHD=BHF (1)

Xét tam giác OBD có OB=OD(=R)ΔOBD cân tại O ODB=OBD  (2)

Từ (1) và (2) KDH+ODB=BHF+OBD=900KDO=900

Chứng minh tương tự ta có:

ΔKEH cân tại K KEH=KHE=CHF

Tam giác OCE có OC = OE ΔOCE cân tại OOEC=OCE

KEH+OEC=CHF+OCE=900KEO=900

Xét tứ giác OEKD có  KDO+KEO=900+900=1800 Tứ giác OEKD là tứ giác nội tiếp (Tứ giác có tổng hai góc đối bằng 1800)

Câu hỏi số 3:
Vận dụng cao
Cho ^BAC=600. Tính độ dài đoạn DE và tỉ số diện tích của hai tam giác AED và ABC.
Câu hỏi:540225
Giải chi tiết

 Tứ giác BEDC nội tiếp đường tròn (O)

 ABC+EDC=1800

Mà  EDC+ADE=1800 (kề bù)

 ABC=ADE

+) Xét  ΔADE và  ΔABCcó:

 A : chung

  ABC=ADE (cmt)

 ΔADE đồng dạng  ΔABC (g-g)

 DEBC=ADAB (1)

+)  ΔADBvuông tại D

  ADAB=cosBAD=cos600=12 (2)

 Từ (1), (2) suy ra :  DEBC=12DE=12BC=12.8=4(cm)

Vậy  DE=4cm.

+)  ΔADE đồng dạng  ΔABC với tỉ số đồng dạng  k=DEBC=12

Khi đó:  SΔADESΔABC=k2=(12)2=14.

Quảng cáo

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

>> Học trực tuyến Lớp 9 & Lộ trình UP10 trên Tuyensinh247.com

>> Chi tiết khoá học xem: TẠI ĐÂY

Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com