Cho hai biểu thức \(A = \dfrac{{\sqrt x + 1}}{{\sqrt x + 2}}\) và \(B = \dfrac{3}{{\sqrt x - 1}} -
Cho hai biểu thức \(A = \dfrac{{\sqrt x + 1}}{{\sqrt x + 2}}\) và \(B = \dfrac{3}{{\sqrt x - 1}} - \dfrac{{\sqrt x + 5}}{{x - 1}}\) với \(x \ge 0,\,\,x \ne 1\).
Trả lời cho các câu 540434, 540435, 540436 dưới đây:
Thay \(x = 4\) (TMĐK) vào biểu thức \(A\) ta có: \(A = \dfrac{{\sqrt 4 + 1}}{{\sqrt 4 + 2}} = \dfrac{{2 + 1}}{{2 + 2}} = \dfrac{3}{4}\).
Vậy khi \(x = 4\) thì \(A = \dfrac{3}{4}\).
Với \(x \ge 0,\,\,x \ne 1\) ta có:
\(\begin{array}{l}B = \dfrac{3}{{\sqrt x - 1}} - \dfrac{{\sqrt x + 5}}{{x - 1}}\\B = \dfrac{3}{{\sqrt x - 1}} - \dfrac{{\sqrt x + 5}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\\B = \dfrac{{3\left( {\sqrt x + 1} \right) - \left( {\sqrt x + 5} \right)}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\\B = \dfrac{{3\sqrt x + 3 - \sqrt x - 5}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\\B = \dfrac{{2\sqrt x - 2}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\\B = \dfrac{{2\left( {\sqrt x - 1} \right)}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\\B = \dfrac{2}{{\sqrt x + 1}}\,\,\,\left( {dpcm} \right)\end{array}\)
Vậy với \(x \ge 0,\,\,x \ne 1\) thì \(B = \dfrac{2}{{\sqrt x + 1}}\).
Với \(x \ge 0,\,\,x \ne 1\) ta có:
\(\begin{array}{l}P = 2A.B + \sqrt x \\P = 2.\dfrac{{\sqrt x + 1}}{{\sqrt x + 2}}.\dfrac{2}{{\sqrt x + 1}} + \sqrt x \\P = \dfrac{4}{{\sqrt x + 2}} + \sqrt x \\P = \sqrt x + 2 + \dfrac{4}{{\sqrt x + 2}} - 2\end{array}\)
Áp dụng BĐT Cô-si cho hai số dương \(\sqrt x + 2\) và \(\dfrac{4}{{\sqrt x + 2}}\) ta có:
\(\sqrt x + 2 + \dfrac{4}{{\sqrt x + 2}} \ge 2\sqrt {\left( {\sqrt x + 2} \right).\dfrac{4}{{\sqrt x + 2}}} = 2\sqrt 4 = 4\)
\(\begin{array}{l} \Rightarrow \sqrt x + 2 + \dfrac{4}{{\sqrt x + 2}} - 2 \ge 2\\ \Rightarrow A \ge 2\end{array}\)
Dấu “=” xảy ra \( \Leftrightarrow \sqrt x + 2 = \dfrac{4}{{\sqrt x + 2}} \Leftrightarrow {\left( {\sqrt x + 2} \right)^2} = 4\) \( \Leftrightarrow \sqrt x + 2 = 2\,\,\left( {Do\,\,\sqrt x + 2 \ge 2\,\,\forall x \ge 0,\,\,x \ne 1} \right)\).
\( \Leftrightarrow \sqrt x = 0 \Leftrightarrow x = 0\,\,\,\left( {tm} \right)\).
Vậy biểu thức \(P\) đạt giá trị nhỏ nhất bằng \(2\) khi và chỉ khi \(x = 0\).
Quảng cáo
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com