Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho hai biểu thức \(A = \dfrac{{\sqrt x  + 1}}{{\sqrt x  + 2}}\) và \(B = \dfrac{3}{{\sqrt x  - 1}} -

Cho hai biểu thức \(A = \dfrac{{\sqrt x  + 1}}{{\sqrt x  + 2}}\) và \(B = \dfrac{3}{{\sqrt x  - 1}} - \dfrac{{\sqrt x  + 5}}{{x - 1}}\) với \(x \ge 0,\,\,x \ne 1\).

Trả lời cho các câu 540434, 540435, 540436 dưới đây:

Câu hỏi số 1:
Vận dụng
Tính giá trị của biểu thức \(A\) khi \(x = 4\).
Câu hỏi:540435
Giải chi tiết

Thay \(x = 4\) (TMĐK)  vào biểu thức \(A\) ta có: \(A = \dfrac{{\sqrt 4  + 1}}{{\sqrt 4  + 2}} = \dfrac{{2 + 1}}{{2 + 2}} = \dfrac{3}{4}\).

Vậy khi \(x = 4\) thì \(A = \dfrac{3}{4}\).

Câu hỏi số 2:
Vận dụng
Rút gọn B.
Câu hỏi:540436
Giải chi tiết

Với \(x \ge 0,\,\,x \ne 1\) ta có:

\(\begin{array}{l}B = \dfrac{3}{{\sqrt x  - 1}} - \dfrac{{\sqrt x  + 5}}{{x - 1}}\\B = \dfrac{3}{{\sqrt x  - 1}} - \dfrac{{\sqrt x  + 5}}{{\left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 1} \right)}}\\B = \dfrac{{3\left( {\sqrt x  + 1} \right) - \left( {\sqrt x  + 5} \right)}}{{\left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 1} \right)}}\\B = \dfrac{{3\sqrt x  + 3 - \sqrt x  - 5}}{{\left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 1} \right)}}\\B = \dfrac{{2\sqrt x  - 2}}{{\left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 1} \right)}}\\B = \dfrac{{2\left( {\sqrt x  - 1} \right)}}{{\left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 1} \right)}}\\B = \dfrac{2}{{\sqrt x  + 1}}\,\,\,\left( {dpcm} \right)\end{array}\)

Vậy với \(x \ge 0,\,\,x \ne 1\) thì \(B = \dfrac{2}{{\sqrt x  + 1}}\).

Câu hỏi số 3:
Vận dụng
Tìm tất cả các giá trị của \(x\) để biểu thức \(P = 2A.B + \sqrt x \) đạt giá trị nhỏ nhất.
Câu hỏi:540437
Giải chi tiết

Với \(x \ge 0,\,\,x \ne 1\) ta có:

\(\begin{array}{l}P = 2A.B + \sqrt x \\P = 2.\dfrac{{\sqrt x  + 1}}{{\sqrt x  + 2}}.\dfrac{2}{{\sqrt x  + 1}} + \sqrt x \\P = \dfrac{4}{{\sqrt x  + 2}} + \sqrt x \\P = \sqrt x  + 2 + \dfrac{4}{{\sqrt x  + 2}} - 2\end{array}\)

Áp dụng BĐT Cô-si cho hai số dương \(\sqrt x  + 2\) và \(\dfrac{4}{{\sqrt x  + 2}}\) ta có:

\(\sqrt x  + 2 + \dfrac{4}{{\sqrt x  + 2}} \ge 2\sqrt {\left( {\sqrt x  + 2} \right).\dfrac{4}{{\sqrt x  + 2}}}  = 2\sqrt 4  = 4\)

\(\begin{array}{l} \Rightarrow \sqrt x  + 2 + \dfrac{4}{{\sqrt x  + 2}} - 2 \ge 2\\ \Rightarrow A \ge 2\end{array}\)

Dấu “=” xảy ra \( \Leftrightarrow \sqrt x  + 2 = \dfrac{4}{{\sqrt x  + 2}} \Leftrightarrow {\left( {\sqrt x  + 2} \right)^2} = 4\) \( \Leftrightarrow \sqrt x  + 2 = 2\,\,\left( {Do\,\,\sqrt x  + 2 \ge 2\,\,\forall x \ge 0,\,\,x \ne 1} \right)\).

\( \Leftrightarrow \sqrt x  = 0 \Leftrightarrow x = 0\,\,\,\left( {tm} \right)\).

Vậy biểu thức \(P\) đạt giá trị nhỏ nhất bằng \(2\) khi và chỉ khi \(x = 0\).

Quảng cáo

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com