Tìm \(x\), biết:
Tìm \(x\), biết:
Trả lời cho các câu 588123, 588124, 588125, 588126 dưới đây:
\(\left( {2x + \dfrac{5}{3}} \right).\left( {\dfrac{5}{4} - x} \right) = 0\)
Đáp án đúng là: A
\(A\left( x \right).B\left( x \right) = 0\)
Trường hợp 1: Giải \(A\left( x \right) = 0\)
Trường hợp 2: Giải \(B\left( x \right) = 0\)
a) \(\left( {2x + \dfrac{5}{3}} \right).\left( {\dfrac{5}{4} - x} \right) = 0\)
Trường hợp 1:
\(2x + \dfrac{5}{3} = 0\)
\(\begin{array}{l}2x = \dfrac{{ - 5}}{3}\\x = \dfrac{{ - 5}}{3}:2 = \dfrac{{ - 5}}{3}.\dfrac{1}{2}\\x = \dfrac{{ - 5}}{6}\end{array}\)
Trường hợp 2:
\(\dfrac{5}{4} - x = 0\)
\(\begin{array}{l} - x = \dfrac{{ - 5}}{4}\\x = \dfrac{5}{4}\end{array}\)
Vậy \(x \in \left\{ {\dfrac{{ - 5}}{6};\dfrac{5}{4}} \right\}\)
\(\dfrac{3}{5}x + \left( {x + 0,5} \right) = \dfrac{{ - 13}}{{15}}\)
Đáp án đúng là: C
b) Vận dụng quy tắc chuyển vế tìm \(x\).
b) \(\dfrac{3}{5}x + \left( {x + 0,5} \right) = \dfrac{{ - 13}}{{15}}\)
\(\begin{array}{l}\dfrac{3}{5}x + x + 0,5 = \dfrac{{ - 13}}{{15}}\\\left( {\dfrac{3}{5} + 1} \right).x + \dfrac{1}{2} = \dfrac{{ - 13}}{{15}}\\\left( {\dfrac{3}{5} + \dfrac{5}{5}} \right).x = \dfrac{{ - 13}}{{15}} - \dfrac{1}{2}\\\dfrac{8}{5}.x = \dfrac{{ - 26}}{{30}} - \dfrac{{15}}{{30}}\\\dfrac{8}{5}.x = \dfrac{{ - 41}}{{30}}\\x = \dfrac{{ - 41}}{{30}}:\dfrac{8}{5}\\x = \dfrac{{ - 41}}{{30}}.\dfrac{5}{8}\\x = \dfrac{{ - 41}}{{48}}\end{array}\)
Vậy \(x = \dfrac{{ - 11}}{{48}}\)
\({3^x} + {3^{x + 2}} = {9^{17}} + {27^{12}}\)
Đáp án đúng là: B
c) \({a^m} = {a^n}\) khi \(m = n\)
c) \({3^x} + {3^{x + 2}} = {9^{17}} + {27^{12}}\)
\(\begin{array}{l}{3^x} + {3^x}{.3^2} = {\left( {{3^2}} \right)^{17}} + {\left( {{3^3}} \right)^{12}}\\{3^x}.\left( {1 + {3^2}} \right) = {3^{34}} + {3^{36}}\\{3^x}.\left( {1 + 9} \right) = {3^{34}} + {3^{34 + 2}}\\{3^x}.10 = {3^{34}} + {3^{34}}{.3^2}\\{3^x}.10 = {3^{34}}.\left( {1 + {3^2}} \right)\\{3^x}.10 = {3^{34}}.\left( {1 + 9} \right)\\{3^x}.10 = {3^{34}}.10\\{3^x} = {3^{34}}\\ \Rightarrow x = 34\end{array}\)
Vậy \(x = 34\)
\(\dfrac{1}{2}{.2^x} + {4.2^x} = {9.2^5}\)
Đáp án đúng là: D
d) \({a^m} = {a^n}\) khi \(m = n\)
d) \(\dfrac{1}{2}{.2^x} + {4.2^x} = {9.2^5}\)
\(\begin{array}{l}{2^x}.\left( {\dfrac{1}{2} + 4} \right) = {9.2^5}\\{2^x}.\left( {\dfrac{1}{2} + \dfrac{8}{2}} \right) = {9.2^5}\\{2^x}.\dfrac{9}{2} = {9.2^5}\\{2^x} = {9.2^5}:\dfrac{9}{2} = {9.2^5}.\dfrac{2}{9}\\{2^x} = {2^6}\\ \Rightarrow x = 6\end{array}\)
Vậy \(x = 6\)
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com