Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Thực hiện phép tính:a) \(3,5.\dfrac{2}{{21}} - \dfrac{5}{9}:\dfrac{{25}}{3} + \dfrac{1}{{15}}\)b) \(16.{\left(

Câu hỏi số 589833:
Thông hiểu

Thực hiện phép tính:

a) \(3,5.\dfrac{2}{{21}} - \dfrac{5}{9}:\dfrac{{25}}{3} + \dfrac{1}{{15}}\)

b) \(16.{\left( {\dfrac{3}{{20}} - \dfrac{2}{5}} \right)^2} + \dfrac{3}{5}\)

c) \(\dfrac{{ - 11}}{3}:\left( {1,5.\sqrt {\dfrac{{16}}{9}}  - \dfrac{{10}}{3}} \right)\)

d) \(\left( {\sqrt {\dfrac{{81}}{{16}}}  + \dfrac{{ - 3}}{4}} \right):{\left( { - \dfrac{3}{4}} \right)^2} - \left| {\dfrac{{ - 27}}{4}:{3^2}} \right|\)

Quảng cáo

Câu hỏi:589833
Phương pháp giải

a) Thực hiện phép cộng, trừ, nhân, chia với các số hữu tỉ.

b) Tính lũy thừa của một số hữu tỉ: \({\left( {\dfrac{a}{b}} \right)^n} = \dfrac{{{a^n}}}{{{b^n}}}\,\,\left( {b \ne 0;n \in \mathbb{Z}} \right)\)

Thực hiện phép cộng, trừ, nhân với các số hữu tỉ.

c) Tính căn bậc hai số học.

Thực hiện phép trừ, chia với các số hữu tỉ.

d) Tính căn bậc hai số học, tính lũy thừa của một số hữu tỉ: \({\left( {\dfrac{a}{b}} \right)^n} = \dfrac{{{a^n}}}{{{b^n}}}\,\,\left( {b \ne 0;n \in \mathbb{Z}} \right)\), tính giá trị tuyệt đối của một số.

Giải chi tiết

a) \(3,5.\dfrac{2}{{21}} - \dfrac{5}{9}:\dfrac{{25}}{3} + \dfrac{1}{{15}}\)

\(\begin{array}{l} = \dfrac{7}{2}.\dfrac{2}{{21}} - \dfrac{5}{9}.\dfrac{3}{{25}} + \dfrac{1}{{15}}\\ = \dfrac{1}{3} - \dfrac{1}{{15}} + \dfrac{1}{{15}}\\ = \dfrac{1}{3} + \left( { - \dfrac{1}{{15}} + \dfrac{1}{{15}}} \right)\\ = \dfrac{1}{3} + 0 = \dfrac{1}{3}\end{array}\)

b) \(16.{\left( {\dfrac{3}{{20}} - \dfrac{2}{5}} \right)^2} + \dfrac{3}{5}\)

\(\begin{array}{l} = 16.{\left( {\dfrac{3}{{20}} - \dfrac{8}{{20}}} \right)^2} + \dfrac{3}{5}\\ = 16.{\left( {\dfrac{{ - 5}}{{20}}} \right)^2} + \dfrac{3}{5}\\ = 16.{\left( {\dfrac{{ - 1}}{4}} \right)^2} + \dfrac{3}{5}\\ = 16.\dfrac{{{{\left( { - 1} \right)}^2}}}{{{4^2}}} + \dfrac{3}{5}\\ = 16.\dfrac{1}{{16}} + \dfrac{3}{5}\\ = 1 + \dfrac{3}{5} = \dfrac{5}{5} + \dfrac{3}{5}\\ = \dfrac{8}{5}\end{array}\)

c) \(\dfrac{{ - 11}}{3}:\left( {1,5.\sqrt {\dfrac{{16}}{9}}  - \dfrac{{10}}{3}} \right)\)

\(\begin{array}{l} = \dfrac{{ - 11}}{3}:\left( {\dfrac{3}{2}.\dfrac{4}{3} - \dfrac{{10}}{3}} \right)\\ = \dfrac{{ - 11}}{3}:\left( {\dfrac{6}{3} - \dfrac{{10}}{3}} \right)\\ = \dfrac{{ - 11}}{3}:\dfrac{{ - 4}}{3}\\ = \dfrac{{ - 11}}{3}.\dfrac{3}{{ - 4}}\\ = \dfrac{{11}}{4}\end{array}\)

d) \(\left( {\sqrt {\dfrac{{81}}{{16}}}  + \dfrac{{ - 3}}{4}} \right):{\left( { - \dfrac{3}{4}} \right)^2} - \left| {\dfrac{{ - 27}}{4}:{3^2}} \right|\)

\(\begin{array}{l} = \left( {\dfrac{9}{4} + \dfrac{{ - 3}}{4}} \right):\dfrac{{{{\left( { - 3} \right)}^2}}}{{{4^2}}} - \left| {\dfrac{{ - 27}}{4}.\dfrac{1}{{{3^2}}}} \right|\\ = \dfrac{6}{4}:\dfrac{9}{{16}} - \left| {\dfrac{{ - 27}}{4}.\dfrac{1}{9}} \right|\\ = \dfrac{6}{4}.\dfrac{{16}}{9} - \left| {\dfrac{{ - 3}}{4}} \right|\\ = \dfrac{8}{3} - \left[ { - \left( { - \dfrac{3}{4}} \right)} \right]\\ = \dfrac{8}{3} - \dfrac{3}{4} = \dfrac{{32}}{{12}} - \dfrac{9}{{12}}\\ = \dfrac{{23}}{{12}}\end{array}\)

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 7 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 7 học tốt, hoàn trả học phí nếu học không hiệu quả.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com