Cho tứ diện đều \(ABCD\) cạnh bằng \(a\). Gọi \(M,\,\,P\) lần lượt là hai điểm di động trên
Cho tứ diện đều \(ABCD\) cạnh bằng \(a\). Gọi \(M,\,\,P\) lần lượt là hai điểm di động trên các cạnh \(AD\) và \(BC\) sao cho \(AM = CP = x\,\,\left( {0 < x < a} \right)\). Mặt phẳng \(\left( \alpha \right)\) qua \(MP\) song song với \(CD\).
a) Xác định giao tuyến của \(\left( \alpha \right)\) và \(\left( {ABC} \right)\), \(\left( \alpha \right)\) và \(\left( {ABD} \right)\)
b) Giá trị nhỏ nhất của tứ giác hình thành bởi các giao tuyến tạo bởi \(\left( \alpha \right)\) và các mặt của tứ diện
Quảng cáo
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com













