Cho Parabol \((P):y = - {x^2}\) và đường thẳng \((d):y = x - 2\).a) Vẽ \((P)\) và \((d)\) trên cùng
Cho Parabol \((P):y = - {x^2}\) và đường thẳng \((d):y = x - 2\).
a) Vẽ \((P)\) và \((d)\) trên cùng một hệ trục tọa độ.
b) Tìm tọa độ giao điểm của \(\left( P \right)\) và \(\left( d \right)\) bằng phép toán.
Quảng cáo
a) Cách vẽ đồ thị hàm số \(y = a{x^2}(a \ne 0)\)
Bước 1: Tìm tập xác định của hàm số.
Bước 2: Lập bảng giá trị tương ứng giữa \(x\) và \(y\).
Bước 3: Vẽ đồ thị và kết luận.
* Chú ý: vì đồ thị hàm số y \( = a{x^2}(a \ne 0)\) luôn đi qua gốc tọa độ \(O\) và nhận trục Oy làm trục đối xứng nên khi vẽ đồ thị của hàm số này , ta chỉ cần tìm một số điểm bên phải trục Oy rồi lấy các điểm đối xứng với chúng qua Oy.
Cách vẽ đồ thị hàm số \(y = ax + b(a \ne 0)\)
Bước 1: Cho \(x = 0\) thì \(y = b\), ta được điểm \(P(0;b)\) thuộc trục Oy.
Cho \(y = 0\) thì \(x = - b/a\), ta được điểm Q(-b/a;0) thuộc trục hoành Ox.
Bước 2: Vẽ đường thẳng đi qua hai điểm \({\rm{P}}\) và \({\rm{Q}}\) ta được đồ thị hàm số \(y = ax + b\)
b) Xét phương trình hoành độ giao điểm của \(\left( P \right)\) và \(\left( d \right)\)
a)
* Vẽ đồ thị \((d):y = x - 2\)
Với \(x = 0 \Rightarrow y = 0 - 2 = - 2\)
Với \(y = 0 \Rightarrow x - 2 = 0 \Rightarrow x = 2\)
Đồ thị hàm số \(y = x - 2\) là đường thẳng đi qua 2 điểm \(M\left( {0; - 2} \right)\) và \(N\left( {2;0} \right)\).
* Vẽ đồ thị \((P):y = - {x^2}\)
Ta có bảng giá trị sau:
\( \Rightarrow \) Đồ thị hàm số là đường cong parabol đi qua các điểm:
\(O\,\left( {0;0} \right);A\left( { - 2; - 4} \right);\,\,B\left( { - 1; - 1} \right);C\left( {1; - 1} \right);\,\,D\left( {2; - 4} \right)\)
Hệ số \(a = - 1 < 0\)nên parabol có bề cong hướng xuống. Đồ thị hàm số nhận Oy làm trục đối xứng.
Ta vẽ được đồ thị hàm số \(\left( d \right):\,\,y = x - 2\) và \((P):y = - {x^2}\) trên cùng hệ trục toạ độ như sau:
b) Xét phương trình hoành độ giao điểm của của \(\left( P \right)\) và \(\left( d \right)\) ta có:
\(\begin{array}{l} - {x^2} = x - 2\\ \Leftrightarrow {x^2} + x - 2 = 0\end{array}\)
Ta có \(a + b + c = 1 + 1 + \left( { - 2} \right) = 0\) nên phương trình có 2 nghiệm phân biệt \(\left[ \begin{array}{l}x = 1\\x = \dfrac{c}{a} = - 2\end{array} \right.\).
Với \(x = 1 \Rightarrow y = - {1^2} = - 1\)
Với \(x = - 2 \Rightarrow y = - {\left( { - 2} \right)^2} = - 4\).
Vậy \(\left( P \right)\) cắt \(\left( d \right)\) tại hai điểm \(\left( {1; - 1} \right)\) và \(\left( { - 2; - 4} \right)\).
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com