Nghiên cứu về quá trình tăng trưởng của một quần thể sinh vật trong điều kiện môi trường
Nghiên cứu về quá trình tăng trưởng của một quần thể sinh vật trong điều kiện môi trường sống hạn chế cho thấy: ban đầu số lượng cá thể tăng trưởng chậm, sau đó nhanh và cuối cùng khi thời gian đủ dài, số lượng cá thể của quần thể đạt đến trạng thái cân bằng, khi đó số lượng cá thể sinh ra xấp xỉ bằng số lượng chết đi. Số lượng cá thể \(N\) trong quần thể theo thời gian \(t\) (ngày) được mô hình hóa và xấp xỉ theo hàm số: \(N\left( t \right) = \dfrac{{16398{e^{0,5\left( {t - 9,19} \right)}}}}{{0,12 + {e^{0,5\left( {t - 9,19} \right)}}}}\). Khi quần thể sinh vật trên đạt trạng thái cân bằng, số cá thể của quần thể gần nhất với giá trị nào sau đây?
Đáp án đúng là: C
Tìm giới hạn của hàm số tại vô cực.
Vì số lượng cá thể của quần thể đạt đến trạng thái cân bằng khi thời gian đủ dài nên số cá thể của quần thể khi đó là: \(\mathop {\lim }\limits_{t \to + \infty } N\left( t \right) = \mathop {\lim }\limits_{t \to + \infty } \dfrac{{16398{e^{0,5\left( {t - 9,19} \right)}}}}{{0,12 + {e^{0,5\left( {t - 9,19} \right)}}}} = 16398.\)
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com