Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Một máy bay di chuyển ra đến đường băng và bắt đầu chạy đà để cất cánh. Giả sử vận

Câu hỏi số 720310:
Vận dụng

Một máy bay di chuyển ra đến đường băng và bắt đầu chạy đà để cất cánh. Giả sử vận tốc của máy bay khi chạy đà được cho bởi \(v(t) = 5 + 3t(\;m/s)\), với \(t\) là thời gian (tính bằng giây) kể từ khi máy bay bắt đầu chạy đà. Sau 30 giây thì máy bay cất cánh rời đường băng. Quãng đường máy bay đã di chuyển từ khi bắt đầu chạy đà đến khi rời đường băng là bao nhiêu mét?

Câu hỏi:720310
Giải chi tiết

Gọi \(S(t)(0 \le t \le 30)\) là quãng đường máy bay di chuyển được sau \(t\) giây kể từ lúc bắt đầu chạy đà.

Ta có \(v(t) = {S^\prime }(t)\). Do đó, \(S(t)\) là một nguyên hàm của hàm số vận tốc \(v(t)\). Sử dụng tính chất của nguyên hàm ta được

\(S(t) = \int v (t)dt = \int {(5 + 3t)} dt = 5\int d t + 3\int t \;dt = 5t + \dfrac{3}{2}{t^2} + C\)

Theo giả thiết, \(S(0) = 0\) nên \(C = 0\) và ta được \(S(t) = \dfrac{3}{2}{t^2} + 5t(\;m)\).

Máy bay rời đường băng khi \(t = 30\) (giây) nên \(S = S(30) = \dfrac{3}{2} \cdot {30^2} + 5 \cdot 30 = 1500(\;m)\).

Vậy quãng đường máy bay đã di chuyển từ khi bắt đầu chạy đà đến khi nó rời đường băng là \(S = 1500\;m\).

Tham Gia Group Dành Cho 2K7 luyện thi Tn THPT - ĐGNL - ĐGTD

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com