Cho tam giác ABC, khi đó biểu thức \(\dfrac{{{{\sin }^3}\dfrac{B}{2}}}{{\cos \left( {\dfrac{{A +
Cho tam giác ABC, khi đó biểu thức
\(\dfrac{{{{\sin }^3}\dfrac{B}{2}}}{{\cos \left( {\dfrac{{A + C}}{2}} \right)}} + \dfrac{{{{\cos }^3}\dfrac{B}{2}}}{{\sin \left( {\dfrac{{A + C}}{2}} \right)}} - \dfrac{{\cos (A + C)}}{{\sin B}} \cdot \tan B\) bằng?
Đáp án đúng là:
Quảng cáo
Sử dụng \(A + B + C = {180^0} \Rightarrow \dfrac{{A + C}}{2} = \dfrac{{{{180}^0} - B}}{2} = {90^0} - \dfrac{B}{2}\)
\(\begin{array}{l}A + B + C = {180^0} \Rightarrow \dfrac{{A + C}}{2} = \dfrac{{{{180}^0} - B}}{2} = {90^0} - \dfrac{B}{2}\\ \Rightarrow \left\{ \begin{array}{l}\cos \left( {\dfrac{{A + C}}{2}} \right) = \sin \dfrac{B}{2}\\\sin \left( {\dfrac{{A + C}}{2}} \right) = \cos \dfrac{B}{2}\end{array} \right.\\ \Rightarrow P = \dfrac{{{{\sin }^3}\dfrac{B}{2}}}{{\cos \left( {\dfrac{{A + C}}{2}} \right)}} + \dfrac{{{{\cos }^3}\dfrac{B}{2}}}{{\sin \left( {\dfrac{{A + C}}{2}} \right)}} - \dfrac{{\cos (A + C)}}{{\sin B}} \cdot \tan B\\ = \dfrac{{{{\sin }^3}\dfrac{B}{2}}}{{\sin \dfrac{B}{2}}} + \dfrac{{{{\cos }^3}\dfrac{B}{2}}}{{\cos \dfrac{B}{2}}} - \dfrac{{\cos \left( {{{180}^0} - A} \right)}}{{\sin B}} \cdot \dfrac{{\sin B}}{{\cos B}}\\ = {\sin ^2}\dfrac{B}{2} + {\cos ^2}\dfrac{B}{2} - \dfrac{{ - \cos B}}{{\cos B}} = 1 + 1 = 2\end{array}\)
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com