Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc: Đánh giá Tư duy Bách Khoa (Đợt 2) (21-22/12/2024) Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp \(S.ABCD\) đáy \(ABCD\) là hình vuông, biết \(AB =

Câu hỏi số 723179:
Vận dụng

Cho hình chóp \(S.ABCD\) đáy \(ABCD\) là hình vuông, biết \(AB = 1,\,\,\angle SAD = {90^0}\) và tam giác \(SAB\) là tam giác đều. Gọi \(Dt\) là đường thẳng đi qua \(D\) và song song với \(SC,\,\,I\) là giao điểm của \(Dt\) và mặt phẳng\(\left( {SAB} \right)\). Thiết diện của hình chóp \(S.ABCD\) với mặt phẳng \(\left( {AIC} \right)\) có diện tích là:

Đáp án đúng là:

Quảng cáo

Câu hỏi:723179
Phương pháp giải

+ Xác định điểm \(I\).

+ Xác định thiết diện.

+ Sử dụng công thức He-rong để tính diện tích tam giác: \({S_{\Delta AEC}} = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} \).

Giải chi tiết

Trong \(\left( {SCD} \right)\) kẻ \(Dt\parallel SC\).

Ta có \(\left\{ \begin{array}{l}S \in \left( {SAB} \right) \cap \left( {SCD} \right)\\\left( {SAB} \right) \supset AB,\,\,\left( {SCD} \right) \supset CD\\AB\parallel CD\,\,\left( {gt} \right)\end{array} \right. \Rightarrow \) Giao tuyến của \(\left( {SAB} \right),\,\,\left( {SCD} \right)\) là đường thẳng đi qua \(S\) và song song với \(AB,\,\,CD\). Trong \(\left( {SAB} \right)\) kẻ \(Sx\parallel AB \Rightarrow \left( {SAB} \right) \cap \left( {SCD} \right) = Sx\).

Trong \(\left( {SCD} \right)\) gọi \(I = Dt \cap Sx\) ta có: \(\left\{ \begin{array}{l}I \in Dt\\I \in Sx \subset \left( {SAB} \right) \Rightarrow I \in \left( {SAB} \right)\end{array} \right. \Rightarrow I = Dt \cap \left( {SAB} \right)\).

Trong \(\left( {SCD} \right)\) gọi \(E = CI \cap SD\), khi đó thiết diện của chóp cắt bởi \(\left( {AIC} \right)\) là tam giác \(AEC\).

\(ABCD\) là hình vuông cạnh \(1 \Rightarrow AC = \sqrt 2 \).

Dễ dàng chứng minh được \(SBAI,\,\,SCDI\) là hình bình hành \( \Rightarrow AI = SB = 1,\,\,E\) là trung điểm của \(SD,\,\,IC\).

Tam giác \(SAD\) có \(SA = AD = 1,\,\,\angle SAD = {90^0} \Rightarrow \Delta SAD\) vuông cân tại \(A \Rightarrow SD = SA\sqrt 2  = \sqrt 2 \).

\( \Rightarrow AE = \dfrac{1}{2}SD = \dfrac{{\sqrt 2 }}{2}\).

Xét tam giác \(IAC\) có:

\(\begin{array}{l}A{E^2} = \dfrac{{A{I^2} + A{C^2}}}{2} - \dfrac{{I{C^2}}}{4} \Leftrightarrow \dfrac{1}{2} = \dfrac{{{1^2} + 2.{1^2}}}{2} - \dfrac{{I{C^2}}}{4}\\ \Rightarrow \dfrac{{I{C^2}}}{4} = {1^2} \Leftrightarrow I{C^2} = 4{1^2} \Leftrightarrow IC = 2 \Rightarrow EC = \dfrac{1}{2}IC = 1\end{array}\)

Khi đó áp dụng công thức Hê-rông ta có: \({S_{\Delta AEC}} = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)}  = \dfrac{{\sqrt 7 }}{8}=0,33\).

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com