Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho hàm số \(f(x)\) xác định trên \(\mathbb{R} \backslash\{-1 ; 1\}\) thỏa mãn

Câu hỏi số 726961:
Thông hiểu

Cho hàm số \(f(x)\) xác định trên \(\mathbb{R} \backslash\{-1 ; 1\}\) thỏa mãn \(f^{\prime}(x)=\dfrac{2}{x^2-1}, f(-2)+f(2)=0\) và \(f\left(-\dfrac{1}{2}\right)+f\left(\dfrac{1}{2}\right)=2\). Tính \(f(-3)+f(0)+f(4)\) được kết quả

Đáp án đúng là: B

Quảng cáo

Câu hỏi:726961
Giải chi tiết

Khi đó \(\left\{\begin{array}{l}f(-2)+f(2)=0 \\ f\left(-\dfrac{1}{2}\right)+f\left(\dfrac{1}{2}\right)=2\end{array} \Rightarrow\left\{\begin{array}{l}\ln 3+C_1+\ln \dfrac{1}{3}+C_3=0 \\ \ln 3+C_2+\ln \dfrac{1}{3}+C_2=2\end{array} \Rightarrow\left\{\begin{array}{l}C_1+C_3=0 \\ C_2=1\end{array}\right.\right.\right.\)

Do đó \(f(-3)+f(0)+f(4)=\ln 2+C_1+C_2+\ln \dfrac{3}{5}+C_3=\ln \dfrac{6}{5}+1\).

Tham Gia Group Dành Cho 2K7 luyện thi Tn THPT - ĐGNL - ĐGTD

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com