Cho hàm số: \(y = \dfrac{{2x + 1}}{{x - 1}}\) (C). Tìm m để đường thẳng d: \(y = - 3x + m\) cắt (C)
Cho hàm số: \(y = \dfrac{{2x + 1}}{{x - 1}}\) (C). Tìm m để đường thẳng d: \(y = - 3x + m\) cắt (C) tại A và B sao cho trọng tâm tam giác OAB nằm trên đường thẳng \(\Delta :\,\,x - y - 2 = 0\).
Đáp án đúng là: D
Quảng cáo
Lập phương trình hoành độ giao điểm (*) của hai đồ thị hàm số.
Số giao điểm của hai đồ thị hàm số là số nghiệm của phương trình (*).
Phương trình bậc hai có hai nghiệm phân biệt \(\Leftrightarrow \Delta >0.\)
Chú ý tập xác định của các hàm số.
Xác định tọa độ giao điểm \(A(x_1; \, \, y_1)\) và \(B(x_2; \, \, y_2)\) của hai đồ thị hàm số.
Áp dụng hệ thức Vi-et đối với phương trình (*) ta được: \(\left\{ \begin{array}{l}{x_1} + {x_2} = - \frac{b}{a}\\{x_1}{x_2} = \frac{c}{a}\end{array} \right..\)
Gọi \(G(x_G; \, \, y_G)\) là trọng tâm tam giác \(OAB\) từ đó suy ra tọa độ điểm \(G.\)
Điểm \(G\) thuộc đường thẳng \(\Delta\) \(\Rightarrow\) tọa độ điểm \(G\) thỏa mãn phương trình đường thẳng \(\Delta.\)
Từ đó suy ra giá trị \(m\) cần tìm.
Đáp án cần chọn là: D
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












