Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho hàm số: \(y = \dfrac{{2x + 1}}{{x - 1}}\) (C). Tìm m để đường thẳng d: \(y =  - 3x + m\) cắt (C)

Câu hỏi số 190639:
Vận dụng cao

Cho hàm số: \(y = \dfrac{{2x + 1}}{{x - 1}}\) (C). Tìm m để đường thẳng d: \(y =  - 3x + m\) cắt (C) tại A và B sao cho trọng tâm tam giác OAB nằm trên đường thẳng \(\Delta :\,\,x - y - 2 = 0\).

Đáp án đúng là: D

Quảng cáo

Câu hỏi:190639
Phương pháp giải

Lập phương trình hoành độ giao điểm (*) của hai đồ thị hàm số.

Số giao điểm của hai đồ thị hàm số là số nghiệm của phương trình (*).

Phương trình bậc hai có hai nghiệm phân biệt \(\Leftrightarrow \Delta >0.\)

Chú ý tập xác định của các hàm số.

Xác định tọa độ giao điểm \(A(x_1; \, \, y_1)\) và \(B(x_2; \, \, y_2)\) của hai đồ thị hàm số.

Áp dụng hệ thức Vi-et đối với phương trình (*) ta được: \(\left\{ \begin{array}{l}{x_1} + {x_2} =  - \frac{b}{a}\\{x_1}{x_2} = \frac{c}{a}\end{array} \right..\)

Gọi \(G(x_G; \, \, y_G)\) là trọng tâm tam giác \(OAB\) từ đó suy ra tọa độ điểm \(G.\)

Điểm \(G\) thuộc đường thẳng \(\Delta\) \(\Rightarrow\) tọa độ điểm \(G\) thỏa mãn phương trình đường thẳng \(\Delta.\)

Từ đó suy ra giá trị \(m\) cần tìm.

Giải chi tiết

ĐKXĐ: \(x \ne 1\).

Phương trình hoành độ giao điểm của (C) và đường thẳng d là:

\(2x + 1 = \left( {x - 1} \right)\left( { - 3x + m} \right) \Leftrightarrow 3{x^2} - \left( {m + 1} \right)x + m + 1 = 0\,\,\,\left( * \right)\)

Đường thẳng d cắt (C) tại hai điểm phân biệt \( \Leftrightarrow \) pt (*) có hai nghiệm phân biệt và khác 1

\( \Leftrightarrow \left\{ \begin{array}{l}\Delta  > 0\\f\left( 1 \right) \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\left( {m + 1} \right)^2} - 12\left( {m + 1} \right) > 0\\3 - \left( {m + 1} \right) + m + 1 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{m^2} - 10m - 11 > 0\\3 \ne 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m > 11\\m <  - 1\end{array} \right.\)

Gọi \({x_1};\,\,{x_2}\) là hai nghiệm phân biệt của phương trình (*) thì hai giao điểm của d và (C) là: \(A\left( {{x_1}; - 3{x_1} + m} \right)\) và \(B\left( {{x_2}; - 3{x_2} + m} \right)\).

Theo hệ thức Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = \dfrac{{m + 1}}{3}\\{x_1}{x_2} = \dfrac{{m + 1}}{3}\end{array} \right.\).

Gọi G là trọng tâm của tam giác OAB ta có: \(\left\{ \begin{array}{l}{x_G} = \dfrac{{{x_1} + {x_2}}}{3}\\{y_G} = \dfrac{{{y_1} + {y_2}}}{3} = \dfrac{{ - 3\left( {{x_1} + {x_2}} \right) + 2m}}{3}\end{array} \right.\)(1)

Áp dụng hệ thức Vi-ét vào hệ thức (1) ta được: \(\left\{ \begin{array}{l}{x_G} = \dfrac{{m + 1}}{9}\\{y_G} = \dfrac{{m - 1}}{3}\end{array} \right.\)

Điểm G thuộc đường thẳng \(\Delta :\,\,x - y - 2 = 0\)

\( \Rightarrow \dfrac{{m + 1}}{9} - \dfrac{{m - 1}}{3} - 2 = 0 \Leftrightarrow 2m =  - 14 \Leftrightarrow m =  - 7\left( {tm} \right)\)

Tham Gia Group Dành Cho 2K7 luyện thi Tn THPT - ĐGNL - ĐGTD

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com