Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho lăng trụ \(ABC.A'B'C'\) có đáy ABC là tam giác đều cạnh a. Đỉnh A’ cách đều các đỉnh A,

Câu hỏi số 195661:
Vận dụng

Cho lăng trụ \(ABC.A'B'C'\) có đáy ABC là tam giác đều cạnh a. Đỉnh A’ cách đều các đỉnh A, B, C. Các cạnh bên tạo với đáy góc \({60^0}\). Thể tích khối chóp \(ACB'C'\) là:

Đáp án đúng là: D

Quảng cáo

Câu hỏi:195661
Giải chi tiết

Gọi O là trọng tâm tam giác ABC. Vì A’ cách đều A, B, C nên \(A'O \bot \left( {ABC} \right)\)

\( \Rightarrow OA\) là hình chiếu vuông góc của A’A trên (ABC) \( \Rightarrow \widehat {\left( {A'A;\left( {ABC} \right)} \right)} = \widehat {\left( {A'A;OA} \right)} = \widehat {A'AO} = {60^0}\)

Tam giác ABC đều nên \(AD = \dfrac{{a\sqrt 3 }}{2} \Rightarrow OA = \dfrac{2}{3}AD = \dfrac{{a\sqrt 3 }}{3}\)

\(A'O \bot \left( {ABC} \right) \Rightarrow A'O \bot OA \Rightarrow \Delta A'OA\) vuông tại O

\( \Rightarrow A'O = OA.\tan 60 = \dfrac{{a\sqrt 3 }}{3}.\sqrt 3  = a\)\( = d\left( {B';\left( {ABC} \right)} \right) = d\left( {A;\left( {A'B'C'} \right)} \right)\)

\({S_{\Delta ABC}} = {S_{\Delta A'B'C'}} = \dfrac{{{a^2}\sqrt 3 }}{4}\)

\( \Rightarrow {V_{B'ABC}} = \dfrac{1}{3}d\left( {B';\left( {ABC} \right)} \right).{S_{\Delta ABC}}\)\( = \dfrac{1}{3}a\dfrac{{{a^2}\sqrt 3 }}{4} = \dfrac{{{a^3}\sqrt 3 }}{{12}}\)

\({V_{A.A'B'C'}} = \dfrac{1}{3}d\left( {A;\left( {A'B'C'} \right)} \right).{S_{\Delta A'B'C'}} = \dfrac{{{a^3}\sqrt 3 }}{{12}}\)

\({V_{ABC.A'B'C'}} = A'O.{S_{\Delta ABC}} = a.\dfrac{{{a^2}\sqrt 3 }}{4} = \dfrac{{{a^3}\sqrt 3 }}{4}\)

Vậy \({V_{ACB'C'}} = {V_{ABC.A'B'C'}} - {V_{B'.ABC}} - {V_{A.A'B'C'}}\)\( = \dfrac{{{a^3}\sqrt 3 }}{4} - \dfrac{{{a^3}\sqrt 3 }}{{12}} - \dfrac{{{a^3}\sqrt 3 }}{{12}} = \dfrac{{{a^3}\sqrt 3 }}{{12}}\)

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com