Cho tập \(A = \left\{ {0;\;1;\;2;\;3;\;4;\;5;\;6;\;7;\;8;\;9} \right\}.\)Từ các phần tử của tập A có
Cho tập \(A = \left\{ {0;\;1;\;2;\;3;\;4;\;5;\;6;\;7;\;8;\;9} \right\}.\)Từ các phần tử của tập A có thể lập được bao nhiêu số có 6 chữ số đôi một khác nhau mà trong đó hai số chẵn không thể đứng cạnh nhau?
Đáp án đúng là: C
Chia trường hợp, xét từ vị trí \({a_1}\) để tìm các số thỏa mãn yêu cầu bài toán.
Giả sử số có 6 chữ số thỏa đề bài có dạng \(M = \overline {{a_1}{a_2}{a_3}{a_4}{a_5}{a_6}} \).
Nhận xét : Trong các vị trí \({a_1},\,{a_2},\,{a_3},\,{a_4},\,{a_5},\,{a_6}\) có tối đa 3 chữ số là số chẵn được lấy từ tập A.
TH1: Số M chỉ chứa 1 chữ số chẵn.
+) \({a_1}\) chẵn : \({a_1}\) có 4 cách chọn
Các vị trí \({a_2},\,{a_3},\,{a_4},\,{a_5},\,{a_6}\) là số lẻ nên có 5! cách xếp
Trường hợp này có : \(4.5! = 480\) cách chọn.
+) \({a_1}\) lẻ : \({a_1}\)ó 5 cách chọn
Chọn một chữ số chẵn và 4 chữ số lẻ và xếp chúng ở 5 vị trí \({a_2},\;\,{a_3},\,\;{a_4},\,\;{a_5},\,\;{a_6}\) có \(C_5^1C_4^45!\) cách
Trường hợp này có : \(5C_5^1C_4^45! = 3000\) cách chọn.
TH2: Số M có chứa 2 chữ số chẵn .
+) \({a_1}\)chẵn : \({a_1}\) có 4 cách chọn
Vị trí \(a_2^{}\) là số lẻ nên \({a_2}\) có 5 cách chọn .
Chọn một chữ số chẵn và 3 số lẻ và xếp chúng vào 4 vị trí còn lại có \(C_4^1C_4^34!\) cách
Trường hợp này có : \(4.5.C_4^1C_4^34! = 7680\)cách chọn.
+) \(a_1^{}\)lẻ : \(a_1^{}\) có 5 cách chọn
Ở các vị trí \({a_2},\,{a_3},\,{a_4},\,{a_5},\,{a_6}\) có 3 chữ số lẻ , ta tạo được 4 vách ngăn , chọn hai chữ số chẵn và đặt vào 2 trong 4 vách ngăn đó.
Chọn 3 chữ số lẻ trong 4 số lẻ đặt ở 3 vị trí còn lại, vậy có \(C_5^2C_4^2C_4^32!3!\) cách.
Trường hợp này này có \(5C_5^2C_4^2C_4^32!3! = 14400\) cách chọn.
TH3: Số M có chứa 3 chữ số chẵn.
+) \({a_1}\) chẵn : \({a_1}\) có 4 cách chọn.
Vị trí \({a_2}\) lẻ nên \({a_2}\) có 5 cách chọn.
Ở các vị trí \(\,{a_3},\,{a_4},\,{a_5},\,{a_6}\) có 2 chữ số lẻ , ta tạo được 3 vách ngăn .Chọn hai chữ số chẵn và đặt vào 2 trong 3 vách ngăn đó,chọn 2 chữ số lẻ trong 4 số lẻ đặt ở 2 vị trí còn lại có \(C_4^22!C_4^2C_3^22!\) cách.
Trường hợp này có: \(4.5C_4^22!C_4^2C_3^22! = 8640\) cách chọn.
+) \({a_1}\) lẻ : \({a_1}\) có 5 cách chọn
Ở các vị trí \({a_2},\,{a_3},\,{a_4},\,{a_5},\,{a_6}\) có 2 chữ số lẻ , ta tạo được 3 vách ngăn.
Chọn ba chữ số chẵn và đặt vào 3 vách ngăn đó,chọn 2 chữ số lẻ trong 4 số lẻ đặt ở 2 vị trí còn lại có \(C_5^33!C_4^22!\) cách.
Trường hợp này có \(5C_4^23!C_5^32! = 3600\) cách chọn.
Vậy có : \(480 + 3000 + 7680 + 14400 + 8640 + 3600 = 37800\) cách chọn thỏa yêu cầu bài toán.
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com