Tổng \(T = C_n^0 + C_n^1 + C_n^2 + C_n^3 + ... + C_n^n\) bằng
Tổng \(T = C_n^0 + C_n^1 + C_n^2 + C_n^3 + ... + C_n^n\) bằng
Đáp án đúng là: A
Quảng cáo
Kiến thức cần nhớ công thức tổng quát: \({\left( {a + b} \right)^n} = C_n^0{a^n}{b^0} + C_n^1{a^{n - 1}}{b^1} + ... + C_n^n{a^0}{b^n} = \sum\limits_{k = 0}^n {C_n^k} {a^{n - k}}{b^k}\)
Khi các \(a = b = 1\) ta chỉ còn lại tổng các hệ số \({(1 + 1)^n} = C_n^0 + C_n^1 + ... + C_n^{n - 1} + C_n^n\)
Đáp án cần chọn là: A
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












