Cho đa thức \(P\left( x \right) = {x^2} + ax + b;\,\,Q\left( x \right) = {x^2} + cx + d\) với
Cho đa thức \(P\left( x \right) = {x^2} + ax + b;\,\,Q\left( x \right) = {x^2} + cx + d\) với \(a,\,\,b,\,\,c,\,\,d\) là các số thực.
1. Tìm \(a\) và \(b\) để \(1\) và \(a\) là nghiệm của phương trình \(P\left( x \right) = 0\).
2. Giả sử phương trình \(P\left( x \right) = 0\) có hai nghiệm phân biệt \({x_1},\,\,{x_2}\) và phương trình \(Q\left( x \right) = 0\) có hai nghiệm \({x_3},\,\,{x_4}\) sao cho \(P\left( {{x_3}} \right) + P\left( {{x_4}} \right) = Q\left( {{x_1}} \right) + Q\left( {{x_2}} \right)\). Chứng minh \(\left| {{x_2} - {x_1}} \right| = \left| {{x_4} - {x_3}} \right|\).
Đáp án đúng là: D
Quảng cáo
1. +) Thay \(x = 1;\,\,x = a\) vào phương trình \(P\left( x \right) = 0\), ta được hệ phương trình hai ẩn \(a,\,\,b\).
+) Giải hệ phương trình bằng phương pháp thế để tìm \(a,\,\,b\) và kết luận.
2. +) Sử dụng định lí Vi-ét.
+) Nhóm các hạng tử phù hợp để áp dụng được định lí Vi-ét.
Đáp án cần chọn là: D
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com










