Với giá trị nào của \(m\) thì giá trị lớn nhất của \(f\left( x \right) = \left| {2x - m} \right|\)
Với giá trị nào của \(m\) thì giá trị lớn nhất của \(f\left( x \right) = \left| {2x - m} \right|\) trên \(\left[ {1;2} \right]\) đạt giá trị nhỏ nhất?
Đáp án đúng là: B
Cho hàm số \(f\left( x \right) = ax + b\left( {a \ne 0} \right)\) và đoạn \(\left[ {\alpha ;\beta } \right] \subset \mathbb{R}.\) Khi đó đồ thị của hàm số \(y = f\left( x \right)\) trên \(\left[ {\alpha ;\beta } \right]\) là một đoạn thẳng nên ta có một số tính chất: \(\left\{ \begin{array}{l}\mathop {\max }\limits_{\left[ {\alpha ;\beta } \right]} f\left( x \right) = \max \left\{ {f\left( \alpha \right);f\left( \beta \right)} \right\}\\\mathop {\min }\limits_{\left[ {\alpha ;\beta } \right]} f\left( x \right) = \min \left\{ {f\left( \alpha \right);f\left( \beta \right)} \right\}\\\mathop {\max }\limits_{\left[ {\alpha ;\beta } \right]} \left| {f\left( x \right)} \right| = \max \left\{ {\left| {f\left( \alpha \right)} \right|;\left| {f\left( \beta \right)} \right|} \right\}\end{array} \right..\)
Xét hàm số \(y = 2x - m\) có \(a = 2 \Rightarrow y = 2x - m\) là hàm số đồng biến trên \(\mathbb{R}.\)
\( \Rightarrow \left[ \begin{array}{l}\mathop {{\rm{max}}}\limits_{\left[ {1;2} \right]} {\rm{ }}f\left( x \right) = f\left( 1 \right)\\\mathop {{\rm{max}}}\limits_{\left[ {1;2} \right]} {\rm{ }}f\left( x \right) = f\left( 2 \right)\end{array} \right..\)
Đặt \(M = \mathop {{\rm{max}}}\limits_{\left[ {1;2} \right]} {\rm{ }}f\left( x \right) \Rightarrow \left\{ \begin{array}{l}M \ge f\left( 1 \right) = \left| {2 - m} \right|\\M \ge f\left( 2 \right) = \left| {4 - m} \right|\end{array} \right..\)
\(M \ge \frac{{f\left( 1 \right) + f\left( 2 \right)}}{2} = \frac{{\left| {2 - m} \right| + \left| {4 - m} \right|}}{2} \ge \frac{{\left| {\left( {2 - m} \right) + \left( {m - 4} \right)} \right|}}{2} = 1.\)
Đẳng thức xảy ra \( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\left| {2 - m} \right| = \left| {4 - m} \right|}\\{\left( {2 - m} \right)\left( {4 - m} \right) \le 0}\end{array} \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}2 - m = 4 - m\\2 - m = - 4 + m\end{array} \right.\\2 \le m \le 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m = 3\\2 \le m \le 4\end{array} \right. \Leftrightarrow m = 3} \right..\)
Vậy GTNN của \(M\) là 1 khi và chỉ khi \(m = 3.\)
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com