Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình nón tròn xoay có chiều cao bằng \(2a\), bán kính đáy bằng \(3a\). Một thiết diện đi qua

Câu hỏi số 382636:
Vận dụng

Cho hình nón tròn xoay có chiều cao bằng \(2a\), bán kính đáy bằng \(3a\). Một thiết diện đi qua đỉnh của hình nón có khoảng cách từ tâm của đáy đến mặt phẳng chứa thiết diện bàng \(\frac{{3a}}{2}\). Diện tích của thiết diện đó bằng:

Đáp án đúng là: A

Quảng cáo

Câu hỏi:382636
Phương pháp giải

- Xác định khoảng cách từ tâm đến mặt phẳng thiết diện.

- Áp dụng hệ thức lượng trong tam giác vuông và định lí Pytago để tính cạnh đáy và chiểu cao của thiết diện, từ đó tính diện tích thiết diện.

Giải chi tiết

Gọi thiết diện qua đỉnh là \(\Delta SAB\) ta có \(SA = SB = l\) nên \(\Delta SAB\) cân tại \(S\).

Gọi \(H\) là trung điểm của \(AB \Rightarrow SH \bot AB\) và \(OH \bot AB\).

\( \Rightarrow AB \bot \left( {SOH} \right)\).

Trong \(\left( {SOH} \right)\) kẻ \(OK \bot SH\,\,\left( {K \in SH} \right)\) ta có

\(\left\{ \begin{array}{l}AB \bot OK\,\,\left( {AB \bot \left( {SOH} \right)} \right)\\OK \bot SH\end{array} \right.\) \( \Rightarrow OK \bot \left( {SAB} \right) \Rightarrow OK = \frac{{3a}}{2}\).

Áp dụng hệ thức lượng trong tam giác vuông \(SOH\) có:

\(\frac{1}{{O{K^2}}} = \frac{1}{{S{O^2}}} + \frac{1}{{O{H^2}}}\) \( \Leftrightarrow \frac{1}{{{{\left( {\frac{{3a}}{2}} \right)}^2}}} = \frac{1}{{{{\left( {2a} \right)}^2}}} + \frac{1}{{O{H^2}}}\)\( \Leftrightarrow OH = \frac{{6a\sqrt 7 }}{7}\).

Áp dụng định lí Pytago trong tam giác vuông \(SOH\) có:

\(SH = \sqrt {S{O^2} + O{H^2}} \)\( = \sqrt {{{\left( {2a} \right)}^2} + {{\left( {\frac{{6a\sqrt 7 }}{7}} \right)}^2}} \) \( = \frac{{8a\sqrt 7 }}{7}\).

Áp dụng định lí Pytago trong tam giác vuông \(OAH\) có:

\(AH = \sqrt {O{A^2} - O{H^2}} \)\( = \sqrt {{{\left( {3a} \right)}^2} - {{\left( {\frac{{6a\sqrt 7 }}{7}} \right)}^2}} \) \( = \frac{{3a\sqrt {21} }}{7}\).

\( \Rightarrow AB = 2AH = \frac{{6a\sqrt {21} }}{7}\).

Vậy diện tích tam giác \(SAB\) là: \({S_{\Delta SAB}} = \frac{1}{2}SH.AB\)\( = \frac{1}{2}.\frac{{8a\sqrt 7 }}{7}.\frac{{6a\sqrt {21} }}{7}\) \( = \frac{{24{a^2}\sqrt 3 }}{7}\). 

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com