Có bao nhiêu số tự nhiên có \(4\) chữ số đôi một khác nhau không vượt quá \(2020?\)
Có bao nhiêu số tự nhiên có \(4\) chữ số đôi một khác nhau không vượt quá \(2020?\)
Đáp án đúng là: D
Sử dụng hai qui tắc đếm cơ bản
Gọi số cần tìm là \(\overline {abcd} \left( {a \ne 0,0 \le a,b,c,d \le 9,a,b,c,d \in N} \right)\)
Theo bài ra ta có \(\overline {abcd} \le 2020\)
+) TH1 : \(a = 1\)
\(b\) có 9 cách chọn
\(c\) có 8 cách chọn
\(d\) có 7 cách chọn
Nên có \(9.8.7 = 504\) số
+)TH2 : \(a = 2\) suy ra \(b = 0\), \(c = 1\) và \(d\) có \(7\) cách chọn
Nên có \(7\) số thỏa mãn.
Vậy có tất cả \(504 + 7 = 511\) số.
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com