Cho hình chóp \(S.ABC\) có độ dài các cạnh \(SA = BC = x\), \(SB = AC = y\), \(SC = AB = z\) thỏa mãn
Cho hình chóp \(S.ABC\) có độ dài các cạnh \(SA = BC = x\), \(SB = AC = y\), \(SC = AB = z\) thỏa mãn \({x^2} + {y^2} + {z^2} = 36\). Giá trị lớn nhất của thể tích khối chóp \(S.ABC\) là:
Đáp án đúng là: B
Quảng cáo
Sử dụng công thức tính thể tích khối tứ diện gần đều: \(V = \dfrac{1}{{6\sqrt 2 }}\sqrt {\left( { - {a^2} + {b^2} + {c^2}} \right)\left( {{a^2} - {b^2} + {c^2}} \right)\left( {{a^2} + {b^2} - {c^2}} \right)} \)
Đáp án cần chọn là: B
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












