Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc ĐGNL Hà Nội, ĐGNL HCM - Ngày 17-18/01/2026
↪ ĐGNL Hà Nội (HSA) - Trạm 3 ↪ ĐGNL HCM (V-ACT) - Trạm 3
Giỏ hàng của tôi

Cho hình chóp \(SABCD\) có đáy là hình vuông cạnh \(a.\) Đường thẳng \(SA\) vuông góc với đáy và

Câu hỏi số 387053:
Thông hiểu

Cho hình chóp \(SABCD\) có đáy là hình vuông cạnh \(a.\) Đường thẳng \(SA\) vuông góc với đáy và \(SA = a\sqrt 2 .\)  Gọi \(\alpha \) là góc giữa hai mặt phẳng \(\left( {SCD} \right)\) và \(\left( {ABCD} \right),\) tính \(\cos \alpha .\)

Đáp án đúng là: B

Quảng cáo

Câu hỏi:387053
Phương pháp giải

Góc giữa hai mặt phẳng \(\left( P \right),\,\,\left( Q \right)\) là góc giữa hai đường thẳng thuộc hai mặt phẳng đã cho cùng vuông góc với giao tuyến của hai mặt phẳng.

Giải chi tiết

Ta có: \(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot CD\)

Lại có: \(CD \bot AD\)

\( \Rightarrow CD \bot \left( {SAD} \right) \Rightarrow CD \bot SD.\)

Mà \(\left( {SCD} \right) \cap \left( {ABCD} \right) = \left\{ {CD} \right\}\)

\(\begin{array}{l} \Rightarrow \angle \left( {\left( {SCD} \right),\,\,\left( {ABCD} \right)} \right) = \angle \left( {SD,\,\,AD} \right) = \angle SDA\\ \Rightarrow \cos SDA = \dfrac{{AD}}{{SD}} = \dfrac{{AD}}{{\sqrt {S{A^2} + A{D^2}} }}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{a}{{\sqrt {{{\left( {a\sqrt 2 } \right)}^2} + {a^2}} }} = \dfrac{a}{{a\sqrt 3 }} = \dfrac{{\sqrt 3 }}{3}.\end{array}\) 

Chọn B.

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com