Trong không gian với hệ trục tọa độ \(Oxyz,\) cho hai vecto \(\overrightarrow a = \left( {3;\,\,0;\,\,1}
Trong không gian với hệ trục tọa độ \(Oxyz,\) cho hai vecto \(\overrightarrow a = \left( {3;\,\,0;\,\,1} \right),\,\,\,\overrightarrow c = \left( {1;\,\,1;\,\,0} \right).\) Tìm tọa độ của vecto \(\overrightarrow b \) thỏa mãn biểu thức \(\overrightarrow b - \overrightarrow a + 2\overrightarrow c = \overrightarrow 0 .\)
Đáp án đúng là: D
Cho các vecto: \(\overrightarrow u = \left( {{x_1};\,\,{y_1};\,\,{z_1}} \right)\) và \(\overrightarrow v = \left( {{x_2};\,\,{y_2};\,\,{z_2}} \right).\) Khi đó: \(\left\{ \begin{array}{l}\overrightarrow u \pm \overrightarrow v = \left( {{x_1} \pm {x_2};\,\,{y_1} \pm {y_2};\,\,{z_1} \pm {z_2}} \right)\\k\overrightarrow u = \left( {k{x_1};\,\,k{y_1};\,\,k{z_1}} \right)\end{array} \right..\)
Theo đề bài ta có: \(\overrightarrow b - \overrightarrow a + 2\overrightarrow c = \overrightarrow 0 \Leftrightarrow \overrightarrow b = \overrightarrow a - 2\overrightarrow c \)
\(\overrightarrow b = \left( {3;\,\,0;\,\,1} \right) - 2\left( {1;\,\,1;\,\,0} \right)\)\( = \left( {3 - 2;\,\,0 - 2.1;\,\,1 - 2.0} \right) = \left( {1;\, - 2;\,\,1} \right).\)
Chọn D.
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com