Tìm hệ số của \({x^7}\) trong khai triển \({\left( {3{x^2} - \dfrac{2}{x}} \right)^n}\) với \(x \ne 0\),
Tìm hệ số của \({x^7}\) trong khai triển \({\left( {3{x^2} - \dfrac{2}{x}} \right)^n}\) với \(x \ne 0\), biết hệ số của số hạng thứ ba trong khai triển bằng 1080.
Đáp án đúng là: B
Quảng cáo
+ Số hạng tổng quát trong khai triển: \({T_{k + 1}} = C_n^k{\left( {3{x^2}} \right)^{n - k}}{\left( {\dfrac{{ - 2}}{x}} \right)^k} = C_n^k{.3^{n - k}}{\left( { - 2} \right)^k}.{x^{2n - 3k}}\)
+ Số hạng \(T_3^{}\)là: \(T_{k + 1}^{} = T_3^{} \Rightarrow k = 2 \Rightarrow T_3^{} = C_n^2{.3^{n - 2}}.{x^{2n - 4}}{\left( { - 2} \right)^2}.{x^{ - 2}}\)
+ Mà hệ số của số hạng \(T_3^{}\) bằng 1080 \( \Rightarrow C_n^2{.3^{n - 2}}{\left( { - 2} \right)^2} = 1080 \Rightarrow n = 5\)
+ Số hạng chứa \({x^7}\)ứng với \(2n - 3k = 7 \Leftrightarrow k = 1\)
\( \Rightarrow \) Hệ số của số hạng chứa \({x^7}\) là: \(C_5^1{.3^4}.{\left( { - 2} \right)^1} = - 810\)
Chọn B.
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com