Tìm số hạng đứng giữa trong khai triển \({\left( {{x^3} + xy} \right)^{21}}\)
Tìm số hạng đứng giữa trong khai triển \({\left( {{x^3} + xy} \right)^{21}}\)
Đáp án đúng là: D
Quảng cáo
+ Khai triển mũ 21 thì ta thấy có 22 số hạng (Cái này là mẹo nhé!)
Tổng quát: Khai triển mũ n thì sẽ có \(n + 1\) số hạng
+ Chú ý: Nếu n là số lẻ \( \Rightarrow \) Số hạng đứng giữa là số hạng thứ \(\dfrac{{\left( {n + 1} \right)}}{2}\) và \(\dfrac{{\left( {n + 1} \right)}}{2} + 1\)
Nếu n là số chẵn\( \Rightarrow \) Số hạng đứng giữa là số hạng thứ \(\dfrac{n}{2} + 1\)
Vì \(n = 21\)\( \Rightarrow \) Số hạng giữa là số hạng thứ \(T_{11}^{};T_{12}^{}\)
+ Khai triển tổng quát của số hạng: \(T_{k + 1}^{} = C_{21}^k{\left( {{x^3}} \right)^{21 - k}}{\left( {xy} \right)^k} = C_{21}^k{x^{63 - 2k}}{y^k}\)
Số hạng \(T_{11}^{}\) là: \(T_{k + 1}^{} = T_{11}^{} \Rightarrow k = 10 \Rightarrow T_{11}^{} = C_{21}^{10}{x^{43}}{y^{10}}\)
Số hạng \(T_{12}^{}\) là: \(T_{k + 1}^{} = T_{12}^{} \Rightarrow k = 11 \Rightarrow T_{12}^{} = C_{21}^{11}{x^{41}}{y^{11}}\)
Chọn D.
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com