Tìm hệ số của \({x^5}\) trong khai triển \(P\left( x \right) = \left( {1 + x} \right) + 2{\left( {1 + x}
Tìm hệ số của \({x^5}\) trong khai triển \(P\left( x \right) = \left( {1 + x} \right) + 2{\left( {1 + x} \right)^2} + ... + 8{\left( {1 + x} \right)^8}\)
Đáp án đúng là: C
Quảng cáo
+\(P\left( x \right) = \left( {1 + x} \right) + 2{\left( {1 + x} \right)^2} + ... + 8{\left( {1 + x} \right)^8}\)
+ Ta lấy \(n{\left( {1 + x} \right)^n}\) là số hạng đại điện cho các số hạng trong \(P(x)\)
+ Số hạng tổng quát trong khai triển: \(T_{k + 1}^{} = n.\left( {C_n^k{{.1}^{n - k}}.{x^k}} \right) = nC_n^k{x^k}\)
Do \({x^5}\) chỉ xuất hiện ở các số hạng \(5{\left( {1 + x} \right)^5},6{\left( {1 + x} \right)^6},7{\left( {1 + x} \right)^7},8{\left( {1 + x} \right)^8}\)
+ Số hạng chứa \({x^5}\) trong khai triển \(5{\left( {1 + x} \right)^5}\)ứng với \(\left\{ \begin{array}{l}k = 5\\n = 5\end{array} \right.\)
\( \Rightarrow \) Hệ số của số hạng chứa \({x^5}\) là: \(5C_5^5\)
+ Số hạng chứa \({x^5}\) trong khai triển \(6{\left( {1 + x} \right)^6}\)ứng với \(\left\{ \begin{array}{l}k = 5\\n = 6\end{array} \right.\)
\( \Rightarrow \) Hệ số của số hạng chứa \({x^5}\) là: \(6C_6^5\)
Tương tự hệ số của \({x^5}\) trong các số hạng còn lại là:\(7C_7^5,8C_8^5\)
Vậy tổng các hệ số là: \(5C_5^5 + 6C_6^5 + 7C_7^5 + 8C_8^5 = 636\)
Chọn C.
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com