Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\), \(SA\) vuông góc với mặt phẳng
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\), \(SA\) vuông góc với mặt phẳng \(\left( {ABCD} \right)\) và \(SA = a\sqrt 3 \). Gọi \(M,\,\,N\) lần lượt là trung điểm của cạnh \(SB\) và \(SD\); mặt phẳng \(\left( {AMN} \right)\) cắt \(SC\) tại \(I\). Tính thể tích khối đa diện \(ABCDMNI\).
Đáp án đúng là: A
- Tính tỉ số \(\dfrac{{SI}}{{SC}}\).
- Sử dụng công thức tỉ số thể tích: Cho tứ diện\(S.ABC\). Các điểm \(M,N,P\) lần lượt nằm trên các cạnh \(SA,\,\,SB,\,\,SC\) thì \(\dfrac{{{V_{S.MNP}}}}{{{V_{S.ABC}}}} = \dfrac{{SM}}{{SA}}.\dfrac{{SN}}{{SB}}.\dfrac{{SP}}{{SC}}.\)
- Tính tỉ số thể tích \(\dfrac{{{V_{S.ANMI}}}}{{{V_{S.ABCD}}}}\) để tính thể tích khối \(ABCDMNI\).
Gọi \(O\) là giao điểm của \(AC\) và \(BD\).
Trong mặt phẳng \(\left( {SBD} \right),\) gọi \(K = SO \cap MN\).
Trong mặt phẳng \(\left( {SAC} \right),\) gọi \(I = AK \cap SC\), suy ra \(I\) chính là giao điểm của \(SC\) và \(mp\left( {AMN} \right)\).
Ta có:
\(MN\) là đường trung bình trong tam giác \(SBD\), suy ra \(\left\{ \begin{array}{l}MN\parallel BD\\MN = \dfrac{1}{2}BD\end{array} \right.\)
\( \Rightarrow NK\parallel DO \Rightarrow \dfrac{{SK}}{{SO}} = \dfrac{{SN}}{{SD}} = \dfrac{1}{2}.\)
Áp dụng định lí Menelaus vào tam giác \(SOC\) có cát tuyến \(AKI\):
\(\dfrac{{SI}}{{IC}}.\dfrac{{AC}}{{AO}}.\dfrac{{KO}}{{KS}} = 1 \Leftrightarrow \dfrac{{SI}}{{IC}}.2.1 = 1\)\( \Rightarrow \dfrac{{SI}}{{IC}} = \dfrac{1}{2} \Rightarrow \dfrac{{SI}}{{SC}} = \dfrac{1}{3}\)
Ta có:
\(\begin{array}{l}\dfrac{{{V_{S.ANI}}}}{{{V_{S.ADC}}}} = \dfrac{{SA}}{{SA}}.\dfrac{{SN}}{{SD}}.\dfrac{{SI}}{{SC}} = 1.\dfrac{1}{2}.\dfrac{1}{3} = \dfrac{1}{6}\\ \Rightarrow {V_{S.ANI}} = \dfrac{1}{6}{V_{S.ADC}} = \dfrac{1}{{12}}{V_{S.ABCD}}\\\dfrac{{{V_{S.AIM}}}}{{{V_{S.ACB}}}} = \dfrac{{SA}}{{SA}}.\dfrac{{SI}}{{SC}}.\dfrac{{SM}}{{SB}} = 1.\dfrac{1}{3}.\dfrac{1}{2} = \dfrac{1}{6}\\ \Rightarrow {V_{S.AIM}} = \dfrac{1}{6}{V_{S.ADC}} = \dfrac{1}{{12}}{V_{S.ABCD}}\\ \Rightarrow {V_{S.ANIM}} = {V_{S.ANI}} + {V_{AIM}} = \dfrac{1}{{12}}{V_{S.ABCD}} + \dfrac{1}{{12}}{V_{S.ABCD}} = \dfrac{1}{6}{V_{S.ABCD}}\\ \Rightarrow {V_{ABCDMNI}} = {V_{S.ABCD}} - {V_{S.ANIM}} = \dfrac{5}{6}{V_{S.ABCD}}.\end{array}\)
Thể tích của khối chóp \(S.ABCD\)là: \({V_{S.ABCD}} = \dfrac{1}{3}SA.{S_{ABCD}} = \dfrac{1}{3}.a\sqrt 3 .{a^2} = \dfrac{{\sqrt 3 {a^3}}}{3}.\)
Vậy thể tích của khối đa diện \(ABCDMNI\) là: \({V_{ABCDMNI}} = \dfrac{5}{6}{V_{S.ABCD}} = \dfrac{{5\sqrt 3 {a^3}}}{{18}}.\)
Chọn A.
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com