Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên: Tìm tất cả các giá trị của \(m\) để

Câu hỏi số 399183:
Vận dụng

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên:

Tìm tất cả các giá trị của \(m\) để bất phương trình \(f\left( {3 - {x^2}} \right) \ge m\) vô nghiệm?

Đáp án đúng là: D

Câu hỏi:399183
Phương pháp giải

- Đặt \(t = 3 - {x^2}\), đưa bất phương trình đã cho về dạng \(f\left( t \right) \le m\).

- Tìm điều kiện cho ẩn \(t\), dựa vào BBT của hàm số \(f\left( x \right)\) để giải bài toán.

Giải chi tiết

Đặt \(t = 3 - {x^2}\), ta có: \({x^2} \ge 0,\,\,\,\forall x \in \mathbb{R} \Rightarrow t = 3 - {x^2} \le 3,\,\,\,\,\forall x \in \mathbb{R}\)\( \Rightarrow t \in \left( { - \infty ;3} \right].\) 

Bất phương trình \(f\left( {3 - {x^2}} \right) \ge m\) vô nghiệm khi và chỉ khi \(f\left( t \right) \ge m\) vô nghiệm với mọi \(t \in \left( { - \infty ;3} \right].\)

Từ BBT của hàm số \(y = f\left( x \right)\) ta thấy: \(f\left( t \right) \ge m\) vô nghiệm với \(t \in \left( { - \infty ;3} \right]\) khi \(m > 3\).

Vậy \(m > 3\).

Tham Gia Group Dành Cho 2K7 luyện thi Tn THPT - ĐGNL - ĐGTD

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com