Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho tam giác \(ABC\) có đường cao \(AH.\) Lấy \(D,\,\,E\) trên \(AB,\,\,AC\) sao cho \(AH\) là phân giác

Câu hỏi số 402531:
Vận dụng

Cho tam giác \(ABC\) có đường cao \(AH.\) Lấy \(D,\,\,E\) trên \(AB,\,\,AC\) sao cho \(AH\) là phân giác góc \(\widehat {DHE}.\) Chứng minh rằng: \(AH,\,\,BE,\,\,CD\) đồng quy.

Câu hỏi:402531
Phương pháp giải

- Từ \(A\) kẻ đường thẳng song song với \(BC\) cắt \(HE,\,\,HD\) tại \(M,\,\,N.\)

- Chứng minh \(AM = AN\).

- Áp dụng định lí Ta-lét.

- Chứng minh \(\dfrac{{AD}}{{BD}}.\dfrac{{BH}}{{CH}}.\dfrac{{CE}}{{AE}} = 1\).

Giải chi tiết

Từ \(A\) kẻ đường thẳng song song với \(BC\) cắt \(HE,\,\,HD\) tại \(M,\,\,N.\)

Xét tam giác \(MHN\). Do \(HA\) vừa là phân giác vừa là đường cao kẻ từ \(A\) \( \Rightarrow \Delta MHN\) cân tại \(H\).

\( \Rightarrow AM = AN\) (Đường cao đồng thời là đường trung tuyến).

Áp dụng định lí Ta-lét khi có \(MN\parallel BC\) ta có: \(\dfrac{{AD}}{{BD}} = \dfrac{{MA}}{{BH}};\,\,\dfrac{{CE}}{{AE}} = \dfrac{{CH}}{{AN}}\).

\( \Rightarrow \dfrac{{AD}}{{BD}}.\dfrac{{BH}}{{CH}}.\dfrac{{CE}}{{AE}} = \dfrac{{MA}}{{BH}}.\dfrac{{BH}}{{CH}}.\dfrac{{CH}}{{AN}} = \dfrac{{MA}}{{AN}} = 1.\)

Vậy \(AH,\,\,BE,\,\,CD\) đồng quy (đpcm).

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com