Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho tam giác \(ABC\) có \(I\) là tâm đường tròn nội tiếp và \(K\) là tâm đường tròn bàng tiếp

Câu hỏi số 403270:
Vận dụng

Cho tam giác \(ABC\) có \(I\) là tâm đường tròn nội tiếp và \(K\) là tâm đường tròn bàng tiếp góc \(A.\) Chứng minh rằng \(B,\,\,C,\,\,I,\,\,K\) cùng nằm trên một đường tròn.

Quảng cáo

Câu hỏi:403270
Phương pháp giải

- Sử dụng tính chất: Tia phân giác trong và phân giác ngoài của 1 góc thì vuông góc với nhau.

- Sử dụng dấu hiệu nhận biết Tứ giác có tổng hai góc đối bằng \({180^0}\) để chứng minh tứ giác nội tiếp.

Giải chi tiết

Xét tam giác \(ABC\) ta có \(BI,\,\,BK\) lần lượt là phân giác trong và phân giác ngoài của góc \(\widehat B \Rightarrow BI \bot BK \Rightarrow \angle IBK = {90^0}\,\,\left( 1 \right)\).

Tương tự ta có \(\angle ICK = {90^0}\,\,\left( 2 \right)\)

Từ \(\left( 1 \right),\left( 2 \right) \Rightarrow \angle IBK + \angle ICK = {180^0} \Rightarrow \)Tứ giác \(BICK\) là tứ giác nội tiếp (Tứ giác có tổng hai góc đối bằng \({180^0}\)). Vậy \(B,\,\,C,\,\,I,\,\,K\) cùng nằm trên một đường tròn.

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com