Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho phương trình: \({x^2} - 2mx + {m^2} - m + 1 = 0\)

Cho phương trình: \({x^2} - 2mx + {m^2} - m + 1 = 0\)

Trả lời cho các câu 1, 2 dưới đây:

Câu hỏi số 1:
Vận dụng

Giải phương trình khi \(m = 1.\)

Đáp án đúng là: A

Câu hỏi:403280
Phương pháp giải

Thay \(m = 1\) vào phương trình, giải phương trình bậc hai một ẩn.

Giải chi tiết

Thay \(m = 1\) vào phương trình ta được phương trình:

\({x^2} - 2x + 1 = 0 \Leftrightarrow {\left( {x - 1} \right)^2} = 0\) \( \Leftrightarrow x - 1 = 0 \Leftrightarrow x = 1.\)

Vậy khi \(m = 1\) thì phương trình có nghiệm \(x = 1.\)

Đáp án cần chọn là: A

Câu hỏi số 2:
Vận dụng

Tìm \(m\) để phương trình có hai nghiệm phân biệt \({x_1},{x_2}\)  thỏa mãn \(x_2^2 + 2m{x_1} = 9.\)

Đáp án đúng là: D

Câu hỏi:403281
Phương pháp giải

Tìm điều kiện của \(m\) để phương trình đã cho có hai nghiệm phân biệt \( \Leftrightarrow \Delta ' > 0.\)

Áp dụng định lý Vi-et và biểu thức đã cho để tìm \(m.\)

Đối chiếu với điều kiện rồi kết luận.

Giải chi tiết

Phương trình đã cho có hai nghiệm phân biệt \( \Leftrightarrow \Delta ' > 0\)

\( \Leftrightarrow {m^2} - \left( {{m^2} - m + 1} \right) > 0 \Leftrightarrow m - 1 > 0 \Leftrightarrow m > 1.\)

Theo hệ thức Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2m\\{x_1}{x_2} = {m^2} - m + 1\end{array} \right.\)

Vì \({x_2}\) là nghiệm của phương trình nên ta có:

\({x_2}^2 - 2m{x_2} + {m^2} - m + 1 = 0\)\( \Rightarrow {x_2}^2 = 2m{x_2} - {m^2} + m - 1\)

Theo đề bài ta có:

\(\begin{array}{l}x_2^2 + 2m{x_1} = 9 \Rightarrow \left( {2m{x_2} - {m^2} + m - 1} \right) + 2m{x_1} = 9\\ \Leftrightarrow 2m\left( {{x_1} + {x_2}} \right) - {m^2} + m - 10 = 0\\ \Leftrightarrow 2m.2m - {m^2} + m - 10 = 0\\ \Leftrightarrow 3{m^2} + m - 10 = 0\\ \Leftrightarrow \left( {m + 2} \right)\left( {3m - 5} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}m + 2 = 0\\3m - 5 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m =  - 2\,\,\,\left( {ktm} \right)\\m = \frac{5}{3}\,\,\,\left( {tm} \right)\end{array} \right..\end{array}\)

Vậy \(m = \frac{5}{3}\).

Đáp án cần chọn là: D

Quảng cáo

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com