Cho hình chóp S.ABC có \(SA \bot \left( {ABC} \right)\), \(AB = \sqrt 3 \), \(AC = 2\) và \(\angle BAC = {30^0}\).
Cho hình chóp S.ABC có \(SA \bot \left( {ABC} \right)\), \(AB = \sqrt 3 \), \(AC = 2\) và \(\angle BAC = {30^0}\). Gọi M, N lần lượt là hình chiếu của A trên SB, SC. Bán kính R của mặt cầu ngoại tiếp hình chóp A.BCNM là:
Đáp án đúng là: C
Quảng cáo
- Sử dụng định lí Cô-sin trong tam giác tính độ dài cạnh BC, từ đó sử dụng định lí Pytago đảo chứng minh \(\Delta ABC\) vuông tại B.
- Gọi I là trung điểm AC, chứng minh IA = IB = IC = IM = IN và suy ra bán kính mặt cầu.
Đáp án cần chọn là: C
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com













