Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc ĐGNL Hà Nội (HSA) và ĐGNL TP.HCM (V-ACT) đợt 3 ngày 18-19/01/2025 ↪ Thi ngay ĐGNL Hà Nội (HSA) ↪ Thi ngay ĐGNL TP.HCM (V-ACT)
Giỏ hàng của tôi

Cho hàm số bậc bốn \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\). Đồ thị hàm số \(y =

Câu hỏi số 407603:
Vận dụng

Cho hàm số bậc bốn \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\). Đồ thị hàm số \(y = f'\left( x \right)\) như hình vẽ.

Hàm số \(y = f\left( {{x^2} + 2} \right)\) nghịch biến trên khoảng nào dưới đây?

Đáp án đúng là: B

Quảng cáo

Câu hỏi:407603
Phương pháp giải

- Đặt \(y = g\left( x \right) = f\left( {{x^2} + 2} \right)\), tính đạo hàm của hàm số \(y = g\left( x \right)\).

- Giải phương trình \(g'\left( x \right) = 0\) dựa vào đồ thị hàm số \(y = f'\left( x \right)\).

- Lập BXD \(g'\left( x \right)\), từ đó suy ra khoảng nghịch biến của hàm số.

Giải chi tiết

Đặt \(y = g\left( x \right) = f\left( {{x^2} + 2} \right)\) ta có \(g'\left( x \right) = 2x.f'\left( {{x^2} + 2} \right)\).

Cho \(g\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\f'\left( {{x^2} + 2} \right) = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\{x^2} + 2 =  - 2\\{x^2} + 2 = 2\\{x^2} + 2 = 5\end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l}x = 0\\x =  \pm \sqrt 3 \end{array} \right.\), trong đó \(x = 0\) là nghiệm bội ba.

Ta có bảng xét dấu như sau:

Dựa vào bảng xét dấu và các đáp án ta suy ra hàm số \(y = g\left( x \right)\) nghịchbiến trên \(\left( { - 3; - 2} \right)\).

Chọn B.

Tham Gia Group Dành Cho 2K7 luyện thi Tn THPT - ĐGNL - ĐGTD

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com