Cho hàm số bậc bốn \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\). Đồ thị hàm số \(y =
Cho hàm số bậc bốn \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\). Đồ thị hàm số \(y = f'\left( x \right)\) như hình vẽ.

Hàm số \(y = f\left( {{x^2} + 2} \right)\) nghịch biến trên khoảng nào dưới đây?
Đáp án đúng là: B
Quảng cáo
- Đặt \(y = g\left( x \right) = f\left( {{x^2} + 2} \right)\), tính đạo hàm của hàm số \(y = g\left( x \right)\).
- Giải phương trình \(g'\left( x \right) = 0\) dựa vào đồ thị hàm số \(y = f'\left( x \right)\).
- Lập BXD \(g'\left( x \right)\), từ đó suy ra khoảng nghịch biến của hàm số.
Lưu ý khi tính đạo hàm của hàm số \(y = g\left( x \right) = f\left( {{x^2} + 1} \right)\) vì đây là hàm hợp, áp dụng công thức tính đạo hàm hàm hợp: \(\left[ {f\left( u \right)} \right]' = u'.f'\left( u \right)\).
Đáp án cần chọn là: B
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com













