Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho tam giác ABC có ba góc nhọn và đường cao BE. Gọi H và K lần lượt là chân các đường vuông

Câu hỏi số 421517:
Vận dụng

Cho tam giác ABC có ba góc nhọn và đường cao BE. Gọi H và K lần lượt là chân các đường vuông góc kẻ từ điểm E đến các đường thẳng AB và BC.

1) Chứng minh tứ giác BHEK là tứ giác nội tiếp.

2) Chứng minh \(BH.BA = BK.BC\).

3) Gọi F là chân đường vuông góc kẻ từ điểm C đến đường thẳng AB và I là trung điểm của đoạn thẳng EF. Chứng minh ba điểm H, I, K là ba điểm thẳng hàng.

Quảng cáo

Câu hỏi:421517
Giải chi tiết

1) Chứng minh tứ giác BHEK là tứ giác nội tiếp.

Ta có:

\(\angle BHE = {90^0}\) (do \(EH \bot AB\))

\(\angle BKE = {90^0}\) (do \(EK \bot BC\))

Tứ giác \(BHEK\) có \(\angle BHE + \angle BKE = {90^0} + {90^0} = {180^0}\) nên là tứ giác nội tiếp (tứ giác có tổng hai góc đối bằng \({180^0}\)) (đpcm)

2) Chứng minh \(BH.BA = BK.BC\).

Theo câu a) tứ giác \(BHEK\) nội tiếp nên \(\angle BKH = \angle BEH\) (cùng chắn cung \(BH\))

Ta có:

\(\angle BEH + \angle EBH = {90^0}\) (do tam giác \(BHE\) vuông tại \(H\)).

\(\angle BAE + \angle EBH = {90^0}\) (do tam giác \(ABE\) vuông tại \(E\)).

Nên \(\angle BEH = \angle BAE\) (cùng phụ với \(\angle EBH\)).

Mà \(\angle BKH = \angle BEH\) (cmt) nên \(\angle BKH = \angle BAE\,\,\,\left( { = \angle BEH} \right)\).

Xét \(\Delta BHK\) và \(\Delta BCA\) có:

\(\angle ABC\) chung

\(\angle BKH = \angle BAE = \angle BAC\) (cmt)

\( \Rightarrow \Delta BHK \sim \Delta BCA\,\,\left( {g.g} \right)\)

\( \Rightarrow \dfrac{{BH}}{{BC}} = \dfrac{{BK}}{{BA}}\) (hai cạnh tương ứng)

\( \Rightarrow BH.BA = BK.BC\) (đpcm).

3) Gọi F là chân đường vuông góc kẻ từ điểm C đến đường thẳng AB và I là trung điểm của đoạn thẳng EF. Chứng minh ba điểm H, I, K là ba điểm thẳng hàng.

Gọi \(I'\) là giao điểm của HK và EF.

Xét tứ giác \(BFEC\) có: \(\angle BFC = \angle BEC = {90^0}\,\,\left( {gt} \right)\) nên là tứ giác nội tiếp (tứ giác có hai đỉnh kề nhau cùng nhìn 1 cạnh các góc bằng nhau).

\( \Rightarrow \angle {B_1} = \angle {F_1}\) (hai góc nội tiếp cùng chắn cung \(EC\)).

Ta có: \(EH//CF\) (cùng vuông góc \(AB\))

\( \Rightarrow \angle {F_1} = \angle {E_1}\) (so le trong)

Do đó \(\angle {B_1} = \angle {E_1}\) (1).

Theo câu a, tứ giác \(BHEK\) nội tiếp nên \(\angle {B_1} = \angle {H_1}\) (hai góc nội tiếp cùng chắn cung \(EK\)) (2).

Từ (1) và (2) suy ra \(\angle {H_1} = \angle {E_1}\)

Tam giác \(I'HE\) có \(\angle {H_1} = \angle {E_1}\) nên là tam giác cân (định nghĩa).

\( \Rightarrow I'H = I'E\) (tính chất tam giác cân)  (3)

Lại có:

\(\angle {H_1} + \angle {H_2} = \angle BHE = {90^0}\)

\(\angle {F_2} + \angle {E_1} = {90^0}\) (do tam giác \(HEF\) vuông tại \(H\)).

Nên \(\angle {H_2} = \angle {F_2}\) hay tam giác \(I'HF\)  cân tại \(I'\) (định nghĩa).

\( \Rightarrow I'H = I'F\) (tính chất tam giác cân)  (4)

Từ (3) và (4) suy ra \(I'E = I'F\) hay \(I'\) là trung điểm của \(EF\).

Do đó \(I' \equiv I\) nên ba điểm \(H,I,K\) thẳng hàng (đpcm).

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com