Cho tam giác ABC có ba góc nhọn và đường cao BE. Gọi H và K lần lượt là chân các đường vuông
Cho tam giác ABC có ba góc nhọn và đường cao BE. Gọi H và K lần lượt là chân các đường vuông góc kẻ từ điểm E đến các đường thẳng AB và BC.
1) Chứng minh tứ giác BHEK là tứ giác nội tiếp.
2) Chứng minh \(BH.BA = BK.BC\).
3) Gọi F là chân đường vuông góc kẻ từ điểm C đến đường thẳng AB và I là trung điểm của đoạn thẳng EF. Chứng minh ba điểm H, I, K là ba điểm thẳng hàng.
1) Chứng minh tứ giác BHEK là tứ giác nội tiếp.
Ta có:
\(\angle BHE = {90^0}\) (do \(EH \bot AB\))
\(\angle BKE = {90^0}\) (do \(EK \bot BC\))
Tứ giác \(BHEK\) có \(\angle BHE + \angle BKE = {90^0} + {90^0} = {180^0}\) nên là tứ giác nội tiếp (tứ giác có tổng hai góc đối bằng \({180^0}\)) (đpcm)
2) Chứng minh \(BH.BA = BK.BC\).
Theo câu a) tứ giác \(BHEK\) nội tiếp nên \(\angle BKH = \angle BEH\) (cùng chắn cung \(BH\))
Ta có:
\(\angle BEH + \angle EBH = {90^0}\) (do tam giác \(BHE\) vuông tại \(H\)).
\(\angle BAE + \angle EBH = {90^0}\) (do tam giác \(ABE\) vuông tại \(E\)).
Nên \(\angle BEH = \angle BAE\) (cùng phụ với \(\angle EBH\)).
Mà \(\angle BKH = \angle BEH\) (cmt) nên \(\angle BKH = \angle BAE\,\,\,\left( { = \angle BEH} \right)\).
Xét \(\Delta BHK\) và \(\Delta BCA\) có:
\(\angle ABC\) chung
\(\angle BKH = \angle BAE = \angle BAC\) (cmt)
\( \Rightarrow \Delta BHK \sim \Delta BCA\,\,\left( {g.g} \right)\)
\( \Rightarrow \dfrac{{BH}}{{BC}} = \dfrac{{BK}}{{BA}}\) (hai cạnh tương ứng)
\( \Rightarrow BH.BA = BK.BC\) (đpcm).
3) Gọi F là chân đường vuông góc kẻ từ điểm C đến đường thẳng AB và I là trung điểm của đoạn thẳng EF. Chứng minh ba điểm H, I, K là ba điểm thẳng hàng.
Gọi \(I'\) là giao điểm của HK và EF.
Xét tứ giác \(BFEC\) có: \(\angle BFC = \angle BEC = {90^0}\,\,\left( {gt} \right)\) nên là tứ giác nội tiếp (tứ giác có hai đỉnh kề nhau cùng nhìn 1 cạnh các góc bằng nhau).
\( \Rightarrow \angle {B_1} = \angle {F_1}\) (hai góc nội tiếp cùng chắn cung \(EC\)).
Ta có: \(EH//CF\) (cùng vuông góc \(AB\))
\( \Rightarrow \angle {F_1} = \angle {E_1}\) (so le trong)
Do đó \(\angle {B_1} = \angle {E_1}\) (1).
Theo câu a, tứ giác \(BHEK\) nội tiếp nên \(\angle {B_1} = \angle {H_1}\) (hai góc nội tiếp cùng chắn cung \(EK\)) (2).
Từ (1) và (2) suy ra \(\angle {H_1} = \angle {E_1}\)
Tam giác \(I'HE\) có \(\angle {H_1} = \angle {E_1}\) nên là tam giác cân (định nghĩa).
\( \Rightarrow I'H = I'E\) (tính chất tam giác cân) (3)
Lại có:
\(\angle {H_1} + \angle {H_2} = \angle BHE = {90^0}\)
\(\angle {F_2} + \angle {E_1} = {90^0}\) (do tam giác \(HEF\) vuông tại \(H\)).
Nên \(\angle {H_2} = \angle {F_2}\) hay tam giác \(I'HF\) cân tại \(I'\) (định nghĩa).
\( \Rightarrow I'H = I'F\) (tính chất tam giác cân) (4)
Từ (3) và (4) suy ra \(I'E = I'F\) hay \(I'\) là trung điểm của \(EF\).
Do đó \(I' \equiv I\) nên ba điểm \(H,I,K\) thẳng hàng (đpcm).
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com