Giải phương trình \(\sqrt x + \sqrt {3x - 2} = {x^2} + 1.\)
Giải phương trình \(\sqrt x + \sqrt {3x - 2} = {x^2} + 1.\)
Đáp án đúng là: B
Điều kiện: \(x \ge \dfrac{2}{3}\)
Ta có:
\(\begin{array}{l}\,\,\,\,\,\,\,\sqrt x + \sqrt {3x - 2} = {x^2} + 1\\ \Leftrightarrow 2\sqrt x + 2\sqrt {3x - 2} = 2{x^2} + 2\\ \Leftrightarrow 2{x^2} - 2\sqrt x - 2\sqrt {3x - 2} + 2 = 0\\ \Leftrightarrow 2\left( {{x^2} - 2x + 1} \right) + 4x - 2\sqrt x - 2\sqrt {3x - 2} = 0\\ \Leftrightarrow 2{\left( {x - 1} \right)^2} + \left( {x - 2\sqrt x + 1} \right) + \left( {3x - 2 - 2\sqrt {3x - 2} + 1} \right) = 0\\ \Leftrightarrow 2{\left( {x - 1} \right)^2} + {\left( {\sqrt x - 1} \right)^2} + {\left( {\sqrt {3x - 2} - 1} \right)^2} = 0\end{array}\)
Vì \({\left( {x - 1} \right)^2} \ge 0;{\left( {\sqrt x - 1} \right)^2} \ge 0\) và \({\left( {\sqrt {3x - 2} - 1} \right)^2} \ge 0\) với mọi \(x \ge \dfrac{2}{3}\) nên
\(\begin{array}{l}2{\left( {x - 1} \right)^2} + {\left( {\sqrt x - 1} \right)^2} + {\left( {\sqrt {3x - 2} - 1} \right)^2} = 0\\ \Leftrightarrow \left\{ \begin{array}{l}x - 1 = 0\\\sqrt x - 1 = 0\\\sqrt {3x - 2} - 1 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\x = 1\\\sqrt {3x - 2} = 1\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x = 1\\3x - 2 = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\x = 1\end{array} \right. \Leftrightarrow x = 1\,\,\,\,\left( {tm} \right)\end{array}\)
Vậy \(x = 1\) là nghiệm duy nhất của phương trình đã cho.
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com