Rút gọn biểu thức \(A = \left( {\dfrac{x}{{x + 3\sqrt x }} + \dfrac{1}{{\sqrt x + 3}}} \right):\left( {1 -
Rút gọn biểu thức \(A = \left( {\dfrac{x}{{x + 3\sqrt x }} + \dfrac{1}{{\sqrt x + 3}}} \right):\left( {1 - \dfrac{2}{{\sqrt x }} + \dfrac{6}{{x + 3\sqrt x }}} \right)\) (với \(x > 0\)).
Đáp án đúng là: B
Áp dụng quy tắc cộng, trừ và nhân, chia các phân thức đại số để rút gọn biểu thức \(A\)
Với \(x > 0\) ta có:
\(\begin{array}{l}A = \left( {\dfrac{x}{{x + 3\sqrt x }} + \dfrac{1}{{\sqrt x + 3}}} \right):\left( {1 - \dfrac{2}{{\sqrt x }} + \dfrac{6}{{x + 3\sqrt x }}} \right)\\A = \left( {\dfrac{x}{{\sqrt x \left( {\sqrt x + 3} \right)}} + \dfrac{1}{{\sqrt x + 3}}} \right):\left( {1 - \dfrac{2}{{\sqrt x }} + \dfrac{6}{{\sqrt x \left( {\sqrt x + 3} \right)}}} \right)\\A = \left( {\dfrac{{\sqrt x }}{{\sqrt x + 3}} + \dfrac{1}{{\sqrt x + 3}}} \right):\dfrac{{\sqrt x \left( {\sqrt x + 3} \right) - 2\left( {\sqrt x + 3} \right) + 6}}{{\sqrt x \left( {\sqrt x + 3} \right)}}\\A = \dfrac{{\sqrt x + 1}}{{\sqrt x + 3}}:\dfrac{{x + 3\sqrt x - 2\sqrt x - 6 + 6}}{{\sqrt x \left( {\sqrt x + 3} \right)}}\\A = \dfrac{{\sqrt x + 1}}{{\sqrt x + 3}}:\dfrac{{x + \sqrt x }}{{\sqrt x \left( {\sqrt x + 3} \right)}}\\A = \dfrac{{\sqrt x + 1}}{{\sqrt x + 3}}:\dfrac{{\sqrt x \left( {\sqrt x + 3} \right)}}{{\sqrt x \left( {\sqrt x + 1} \right)}}\\A = 1\end{array}\)
Vậy với \(x > 0\) thì \(A = 1\).
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com