Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho phương trình \({x^2} - 3x + 1 = 0\). Gọi \({x_1}\) và \({x_2}\) là hai nghiệm của phương trình. Hãy

Câu hỏi số 421550:
Vận dụng

Cho phương trình \({x^2} - 3x + 1 = 0\). Gọi \({x_1}\) và \({x_2}\) là hai nghiệm của phương trình. Hãy tính giá trị biểu thức \(A = x_1^2 + x_2^2\).

Đáp án đúng là: C

Quảng cáo

Câu hỏi:421550
Phương pháp giải

Xác định điều kiện phương trình bậc hai một ẩn có hai nghiệm phân biệt \( \Leftrightarrow \Delta ' > 0\)

Áp dụng hệ thức Vi – ét xác định \({x_1} + {x_2};{x_1}{x_2}\) theo tham số \(m\)

Biến đổi biểu thức cần tính sao cho xuất hiện \({x_1} + {x_2};{x_1}{x_2}\), sau đó tìm được giá trị tham số \(m\)

Giải chi tiết

Xét phương trình \({x^2} - 3x + 1 = 0\) có \(\Delta  = {\left( { - 3} \right)^2} - 4.1.1 = 5 > 0\) nên phương trình luôn có hai nghiệm phân biệt \({x_1},\,\,{x_2}\). Khi đó áp dụng định lí Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = \dfrac{{ - \left( { - 3} \right)}}{1} = 3\\{x_1}{x_2} = \dfrac{1}{1} = 1\end{array} \right.\).

Ta có:  

\(\begin{array}{l}A = x_1^2 + x_2^2\\A = x_1^2 + x_2^2 + 2{x_1}{x_2} - 2{x_1}{x_2}\\A = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2}\\A = {3^2} - 2.1\\A = 7\end{array}\)

Vậy \(A = 7\).

Đáp án cần chọn là: C

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com