Cho đường tròn \(\left( O \right)\) và một điểm \(I\) nằm ngoài đường tròn. Qua \(I\) kẻ hai
Cho đường tròn \(\left( O \right)\) và một điểm \(I\) nằm ngoài đường tròn. Qua \(I\) kẻ hai tiếp tuyến \(IM\) và \(IN\) với đường tròn \(\left( O \right).\) Gọi \(K\) là điểm đối xứng với \(M\) qua \(O.\) Đường thẳng \(IK\) cắt đường tròn \(\left( O \right)\) tại \(H.\)
a) Chứng minh tứ giác \(IMON\) nội tiếp đường tròn.
b) Chứng minh \(IM.IN = IH.IK.\)
c) Kẻ \(NP \bot MK.\) Chứng minh đường thẳng \(IK\) đi qua trung điểm của \(NP.\)
a) Chứng minh tứ giác \(IMON\) nội tiếp đường tròn.
Ta có: \(IM,\,\,IN\) là các tiếp tuyến của \(\left( O \right)\) tại \(M,\,\,N\) \( \Rightarrow \angle IMO = \angle INO = {90^0}\) (định nghĩa).
Xét tứ giác \(IMON\) ta có: \(\angle IMO + \angle INO = {90^0} + {90^0} = {180^0}\)
Mà hai góc này là hai góc đối diện \( \Rightarrow IMON\) là tứ giác nội tiếp đường tròn (dhnb).
b) Chứng minh \(IM.IN = IH.IK.\)
Ta có: \(K\) là điểm đối xứng của \(M\) qua \(O\) \( \Rightarrow O\) là trung điểm của \(MK\) và \(MK\) là đường kính của \(\left( O \right).\)
Ta có: \(\angle MHK\) là góc nội tiếp chắn nửa đường tròn \(\left( O \right).\)
\( \Rightarrow \angle MHK = {90^0}\) hay \(MH \bot HK.\)
Áp dụng hệ thức lượng cho \(\Delta IMK\) vuông tại \(M\) có đường cao \(MH\) ta có: \(I{M^2} = IH.IK\).
Mà \(IM = IN\) (tính chất hai tiếp tuyến cắt nhau).
\( \Rightarrow I{M^2} = IN.IM = IH.IK\) (đpcm).
c) Kẻ \(NP \bot MK.\) Chứng minh đường thẳng \(IK\) đi qua trung điểm của \(NP.\)
Gọi \(IK \cap NP = \left\{ J \right\}\), \(IK \cap MN = \left\{ E \right\}\).
Ta có: \(IM = IN\,\,\,\left( {cmt} \right)\) nên tam giác \(IMN\) cân tại \(I\) (tính chất tam giác cân).
\( \Rightarrow \angle INM = \angle IMN\) (2 góc ở đáy tam giác cân).
Lại có \(\angle MNP = \angle IMN\) (so le trong do \(NP\parallel MI\) - cùng vuông góc với \(MK\)).
\( \Rightarrow \angle INM = \angle MNP\) \(\left( { = \angle IMN} \right)\).
\( \Rightarrow NE\) là phân giác trong \(\angle INJ\).
Lại có \(\angle MNK\) là góc nội tiếp chắn nửa đường tròn \(\left( O \right)\) nên \(\angle MNK = {90^0}\), do đó \(NK \bot NE\) nên \(NK\) là phân giác ngoài của \(\angle INJ\).
Áp dụng tính chất đường phân giác ta có: \(\dfrac{{NI}}{{NJ}} = \dfrac{{EI}}{{EJ}} = \dfrac{{KI}}{{KJ}}\).
Áp dụng định lí Ta-let do \(NP\parallel MI\) ta có: \(\dfrac{{EI}}{{EJ}} = \dfrac{{MI}}{{NJ}}\), \(\dfrac{{KI}}{{KJ}} = \dfrac{{MI}}{{JP}}\).
Từ đó suy ra \(\dfrac{{MI}}{{NJ}} = \dfrac{{MI}}{{JP}} \Rightarrow NJ = JP\) \( \Rightarrow J\) là trung điểm của \(NP\).
Vậy đường thẳng \(IK\) đi qua trung điểm của \(NP\) (đpcm).
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com