Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho phương trình \({x^2} - 2\left( {m + 1} \right)x + m - 4 = 0\), với \(m\) là tham số a) Chứng minh

Câu hỏi số 422644:
Thông hiểu

Cho phương trình \({x^2} - 2\left( {m + 1} \right)x + m - 4 = 0\), với \(m\) là tham số

a) Chứng minh phương trình có hai nghiệm phân biệt với mọi \(m.\)

b) Gọi \({x_1};{x_2}\) là hai nghiệm của phương trình. Chứng minh giá trị biểu thức \(A = {x_1}\left( {1 - {x_2}} \right) + {x_2}\left( {1 - {x_1}} \right)\) không phụ thuộc \(m\).

Quảng cáo

Câu hỏi:422644
Giải chi tiết

a) Chứng minh phương trình có hai nghiệm phân biệt với mọi \(m.\)

Xét phương trình \({x^2} - 2\left( {m + 1} \right)x + m - 4 = 0\)

Ta có:

\(\begin{array}{l}\Delta ' = {\left[ { - \left( {m + 1} \right)} \right]^2} - 1.\left( {m - 4} \right)\\ = {m^2} + 2m + 1 - m + 4\\ = {m^2} + m + 5\end{array}\)

\(\begin{array}{l} = {m^2} + 2.m.\dfrac{1}{2} + \dfrac{1}{4} + \dfrac{{19}}{4}\\ = {\left( {m + \dfrac{1}{2}} \right)^2} + \dfrac{{19}}{4}\end{array}\)

Vì \({\left( {m + \dfrac{1}{2}} \right)^2} \ge 0\) với mọi \(m\) nên \({\left( {m + \dfrac{1}{2}} \right)^2} + \dfrac{{19}}{4} \ge \dfrac{{19}}{4} > 0\) với mọi \(m\)

Hay \(\Delta ' > 0\) với mọi \(m\) nên phương trình đã cho có hai nghiệm phân biệt với mọi \(m.\)

b) Gọi \({x_1};{x_2}\) là hai nghiệm của phương trình. Chứng minh giá trị biểu thức \(A = {x_1}\left( {1 - {x_2}} \right) + {x_2}\left( {1 - {x_1}} \right)\) không phụ thuộc \(m\).

Theo câu a) phương trình đã cho có hai nghiệm phân biệt với mọi \(m.\)

Gọi \({x_1};{x_2}\) là hai nghiệm của phương trình.

Theo hệ thức Vi-et ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2\left( {m + 1} \right) = 2m + 2\\{x_1}{x_2} = m - 4\end{array} \right.\)

Ta có: \(A = {x_1}\left( {1 - {x_2}} \right) + {x_2}\left( {1 - {x_1}} \right)\)

\(\begin{array}{l} = {x_1} - {x_1}{x_2} + {x_2} - {x_1}{x_2}\\ = \left( {{x_1} + {x_2}} \right) - 2{x_1}{x_2}\\ = 2m + 2 - 2\left( {m - 4} \right)\\ = 2m + 2 - 2m + 8\\ = 10\end{array}\)

Vậy \(A = 10\) không phụ thuộc vào \(m.\)

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com