Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật với \(AB = a;\,AD = 2a.\) Hình

Câu hỏi số 528188:
Vận dụng

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật với \(AB = a;\,AD = 2a.\) Hình chiếu vuông góc của \(S\) trên mặt phẳng đáy là trung điểm \(H\) của \(AD,\) góc giữa \(SB\) và mặt phẳng đáy \(\left( {ABCD} \right)\) là \({45^o}.\) Tính khoảng cách giữa hai đường thẳng \(SD\) và \(BH\) theo \(a\).

Đáp án đúng là: A

Câu hỏi:528188
Phương pháp giải

Xác định góc giữa \(SB\) và mặt phẳng đáy \(\left( {ABCD} \right)\) là \(\angle SBH = {45^o}\)

Chọn một mặt phẳng chứa \(SD\) và song song với \(BH\), đưa khoảng cách giữa hai đường thẳng \(BH\) và \(SD\) về khoảng cách từ một điểm tới một mặt phẳng.

Giải chi tiết

Do \(SH \bot \left( {ABCD} \right)\) nên góc giữa \(SB\) và mặt phẳng đáy \(\left( {ABCD} \right)\) là \(\angle SBH = {45^o}\)

Ta có \(\Delta SBH\) vuông cân tại \(H\) nên \(SH = BH = a\sqrt 2 \)

Gọi \(K\) là trung điểm của \(BC,\) ta có \(BH//DK \Rightarrow BH//\left( {SDK} \right)\)

Suy ra \(d\left( {BH,SD} \right) = d\left( {BH,\left( {SDK} \right)} \right) = d\left( {H,\left( {SDK} \right)} \right)\)

Tứ diện \(SHDK\) vuông tại \(H\) nên \(\dfrac{1}{{{d^2}\left( {H;\left( {SDK} \right)} \right)}} = \dfrac{1}{{H{S^2}}} + \dfrac{1}{{H{K^2}}} = \dfrac{5}{{2{a^2}}}\)

Vậy \(d\left( {BH,SD} \right) = d\left( {H,\left( {SDK} \right)} \right) = a\sqrt {\dfrac{2}{5}} \)

Tham Gia Group Dành Cho 2K7 luyện thi Tn THPT - ĐGNL - ĐGTD

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com