Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\). Tam giác \(SAB\) là tam giác
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\). Tam giác \(SAB\) là tam giác vuông cân đỉnh \(S\) và nằm trong mặt phẳng vuông góc với mặt phẳng đáy \(\left( {ABCD} \right)\). Tính thể tích khối chóp \(S.ABCD\).
Quảng cáo
- Kẻ \(SH \bot AB\). Xác định giao tuyến \(\left( {SAB} \right) \cap \left( {ABCD} \right) = AB\). Từ đó suy ra \(SH\) là chiều cao của khối chóp.
- Sử dụng định lý: trong tam giác vuông, trung tuyến ứng với cạnh huyền có độ dài bằng nửa cạnh huyền.
- Áp dụng công thức tính thể tích khối chóp: \(V = \dfrac{1}{3}.h.{S_d}\), với \(h\) là chiều cao, \({S_d}\) là diện tích đáy.
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com













